Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
ChemMedChem ; : e202300615, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38554286

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder and the leading cause of dementia worldwide. It is characterized by a progressive decline in cholinergic neurotransmission. During the development of AD, acetylcholinesterase (AChE) binds to ß-amyloid peptides to form amyloid fibrils, which aggregate into plaque deposits. Meanwhile, tau proteins are hyperphosphorylated, forming neurofibrillary tangles (NFTs) that aggregate into inclusions. These complexes are cytotoxic for the brain, causing impairment of memory, attention, and cognition. AChE inhibitors are the main treatment for AD, but their effect is only palliative. This study aimed to design and synthesize novel benzofuran derivatives and evaluate their inhibition of AChE in vitro and in silico. Results: The seven synthesized benzofuran derivatives inhibited AChE in vitro. Benzofurans hydroxy ester 4, amino ester 5, and amido ester (±)-7 had the lowest inhibition constant (Ki) values and displayed good affinity for EeAChE in molecular docking. Six derivatives showed competitive inhibition, while the best compound (5: Ki=36.53 µM) exhibited uncompetitive inhibition. The amino, hydroxyl, amide, and ester groups of the ligands favored interaction with the enzyme by hydrogen bonds. Conclusion: Three benzofurans were promising AChE inhibitors with excellent Ki values. In future research on their their application to AD, 5 will be considered as the base structure.

2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2159-2170, 2024 04.
Article in English | MEDLINE | ID: mdl-37792048

ABSTRACT

Human ß3-adrenoceptor (ß3AR) agonists were considered potential agents for the treatment of metabolic disorders. However, compounds tested as ß3AR ligands have shown marked differences in pharmacological profile in rodent and human species, although these compounds remain attractive as they were successfully repurposed for the therapy of urinary incontinence. In this work, some biarylamine compounds were designed and tested in silico as potential ß3AR agonists on 3-D models of mouse or human ß3ARs. Based on the theoretical results, we identified, synthesized and tested a biarylamine compound (polibegron). In CHO-K1 cells expressing the human ß3AR, polibegron and the ß3AR agonist BRL 37344 were partial agonists for stimulating cAMP accumulation (50 and 57% of the response to isoproterenol, respectively). The potency of polibegron was 1.71- and 4.5-fold higher than that of isoproterenol and BRL37344, respectively. These results indicate that polibegron acts as a potent, but partial, agonist at human ß3ARs. In C57BL/6N mice with obesity induced by a high-fat diet, similar effects of the equimolar intraperitoneal administration of polibegron and BRL37344 were observed on weight, visceral fat and plasma levels of glucose, cholesterol and triglycerides. Similarities and differences between species related to ligand-receptor interactions can be useful for drug designing.


Subject(s)
Adrenergic beta-Agonists , Receptors, Adrenergic, beta-3 , Cricetinae , Humans , Mice , Animals , Isoproterenol , Receptors, Adrenergic, beta-3/metabolism , Mice, Inbred C57BL , CHO Cells , Cricetulus , Adrenergic beta-Agonists/pharmacology
3.
Mol Divers ; 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37733244

ABSTRACT

Solving the worldwide problem of growing bacterial drug resistance will require a short-run and medium-term strategy. Structure-activity relationship (SAR) and quantitative SAR (QSAR) analyses have recently been utilized to reveal the molecular basis of the antibacterial activity and antibacterial spectrum of penicillins, the use of which is no longer solely empirical. Likewise, a more rational drug design can be achieved with cephalosporins, the largest group of ß-lactam antibiotics. The current contribution aimed to establish the molecular and physicochemical basis of the antibacterial activity of five generations of cephalosporins on methicillin-sensitive (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA). With SAR and QSAR analyses, the molecular portions that provide essential and additional antibacterial activity were identified. The substitutions with greater volume and polarity on the R2 side chain of the cephem nucleus increase potency on MSSA. The best effect is produced by substitutions with polar nitrogen atoms at the alpha-carbon (Cα). Substitutions with greater volume and polarity on the R1 side chain further enhance antibacterial activity. In contrast, the effect against MRSA seems to be independent of any substitution on R2 or at the Cα, while depending on the accessory portions with greater volume and polarity on R1.

4.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37375843

ABSTRACT

Amoebiasis is produced by the parasite Entamoeba histolytica; this disease affects millions of people throughout the world who may suffer from amoebic colitis or amoebic liver abscess. Metronidazole is used to treat this protozoan, but it causes important adverse effects that limit its use. Studies have shown that riluzole has demonstrated activity against some parasites. Thus, the present study aimed, for the first time, to demonstrate the in vitro and in silico anti-amoebic activity of riluzole. In vitro, the results of Entamoeba histolytica trophozoites treated with IC50 (319.5 µM) of riluzole for 5 h showed (i) a decrease of 48.1% in amoeba viability, (ii) ultrastructural changes such as a loss of plasma membrane continuity and alterations in the nuclei followed by lysis, (iii) apoptosis-like cell death, (iv) the triggering of the production of reactive oxygen species and nitric oxide, and (v) the downregulation of amoebic antioxidant enzyme gene expression. Interestingly, docking studies have indicated that riluzole presented a higher affinity than metronidazole for the antioxidant enzymes thioredoxin, thioredoxin reductase, rubrerythrin, and peroxiredoxin of Entamoeba histolytica, which are considered as possible candidates of molecular targets. Our results suggest that riluzole could be an alternative treatment against Entamoeba histolytica. Future studies should be conducted to analyze the in vivo riluzole anti-amoebic effect on the resolution of amebic liver abscess in a susceptible model, as this will contribute to developing new therapeutic agents with anti-amoebic activity.

5.
J Inorg Biochem ; 238: 112027, 2023 01.
Article in English | MEDLINE | ID: mdl-36345068

ABSTRACT

Boron-containing compounds (BCC) exert effects on neurons. After the expanding of both the identification and synthesis of new BCC, novel effects in living systems have been reported, many of these involving neuronal action. In this review, the actions of BCC on neurons are described; the effects have been inferred by boron deprivation or addition. Also, the effects can be related to those mediated by interaction on ionic channels, G-protein coupled receptors, or other receptors exerting modification on neuronal behavior. Additionally, BCC have exhibited effects by the modulation of inflammation or oxidative processes. BCC are expanding as drugs. Deprivation of boron sources from the diet shows the role of some natural BCC. However, the observations of several new synthesized compounds suggest their ability to act with attractive potency, efficacy, and long-term action on neuronal receptors or processes related with the origin and evolution of neurodegenerative processes. The details of BCC-target interactions are currently being elucidated in progress, as those observed from BCC-protein crystal complexes. Taking all of the above into account, the expansion is presumably near to having studies on the application of BCC as drugs on specific targets for treating neurodegenerative diseases.


Subject(s)
Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/drug therapy , Boron , Boron Compounds/chemistry , Neurons , Inflammation
6.
Int J Mol Sci ; 23(6)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35328650

ABSTRACT

Preclinical and clinical evidence supports melatonin and its analogues as potential treatment for diseases involving cognitive deficit such as Alzheimer's disease. In this work, we evaluated by in silico studies a set of boron-containing melatonin analogues on MT1 and MT2 receptors. Then, we synthesized a compound (borolatonin) identified as potent agonist. After chemical characterization, its evaluation in a rat model with cognitive deficit showed that it induced ameliorative effects such as those induced by equimolar administration of melatonin in behavioral tests and in neuronal immunohistochemistry assays. Our results suggest the observed effects are by means of action on the melatonin system. Further studies are required to clarify the mechanism(s) of action, as the beneficial effects on disturbed memory by gonadectomy in male rats are attractive.


Subject(s)
Melatonin , Receptor, Melatonin, MT1 , Animals , Cognition , Male , Melatonin/pharmacology , Melatonin/therapeutic use , Rats , Receptor, Melatonin, MT1/agonists , Receptor, Melatonin, MT2 , Tryptophan
8.
J Biol Inorg Chem ; 27(1): 121-131, 2022 02.
Article in English | MEDLINE | ID: mdl-34806120

ABSTRACT

Levodopa is a cornerstone in Parkinson's disease treatment. Beneficial effects are mainly by binding on D2 receptors. Docking simulations of a set of compounds including well-known D2-ligands and a pool of Boron-Containing Compounds (BCC), particularly boroxazolidones with a tri/tetra-coordinated boron atom, were performed on the D2 Dopamine receptor (D2DR). Theoretical results yielded higher affinity of the compound DPBX, a Dopaboroxazolidone, than levodopa on D2DR. Essential interactions with residues in the third and sixth transmembrane domains of the D2DR appear to be crucial to induce and stabilize interactions in the active receptor state. Results from a motor performance evaluation of a murine model of Parkinson's disease agree with theoretical results, as DPBX showed similar efficacy to that of levodopa for diminishing MPTP-induced parkinsonism. This beneficial effect was disrupted with prior Risperidone (D2DR antagonist) administration, supporting the role of D2DR in the biological effect of DPBX. In addition, DPBX limited neuronal loss in substantia nigra in a similar manner to that of levodopa administration.


Subject(s)
Levodopa , Parkinson Disease , Animals , Boron , Levodopa/pharmacology , Levodopa/therapeutic use , Mice , Parkinson Disease/drug therapy
9.
Amino Acids ; 54(2): 215-228, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34854957

ABSTRACT

The GABAergic and glutamatergic neurotransmission systems are involved in seizures and other disorders of the central nervous system (CNS). Benzofuran derivatives often serve as the core in drugs used to treat such neurological disorders. The aim of this study was to synthesize new γ-amino acids structurally related to GABA and derived from 2,3-disubstituted benzofurans, analyze in silico their potential toxicity, ADME properties, and affinity for the GluN1-GluN2A NMDA receptor, and evaluate their potential activity and neuronal mechanisms in a murine model of pentylenetetrazol (PTZ)- and 4-aminopyridine (4-AP)-induced seizures. The in silico analysis evidenced a low risk of toxicity for the test compounds as well as the probability that they can cross the blood-brain barrier (BBB) to reach their targets in the CNS. According to docking simulations, these compounds bind at the active site of the NMDA glutamate receptor with high affinity. The in vivo assays demonstrated that 4 protects against 4-AP-induced seizure episodes, suggesting negative allosteric modulation (NAMs) at the glutamatergic NMDA receptor. Contrarily, 3 (the regioisomer of 4) and its racemic derivatives (cis-2,3-dihydrobenzofurans) were previously described to exacerbate such episodes, pointing to their positive allosteric modulation (PAMs) of the same receptor.


Subject(s)
Benzofurans , Receptors, N-Methyl-D-Aspartate , Amino Acids , Animals , Benzofurans/pharmacology , Ligands , Mice , Pentylenetetrazole , Receptors, N-Methyl-D-Aspartate/metabolism
10.
Parasitol Res ; 120(8): 2905-2918, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34195872

ABSTRACT

Current treatments for Chagas disease have a limited impact during the chronic stage and trigger severe side effects. Treatments target Trypanosoma cruzi, the etiological agent of the disease. The aims of this study were to evaluate the trypanocidal activity of four 2-phenylbenzothiazole derivatives (BZT1-4) in vitro by using the infectious and non-infectious forms of T. cruzi (trypomastigotes and epimastigotes, respectively) and to test the most promising compound (BZT4) in vivo in mice. Additionally, the toxicological profile and possible neuronal damage were examined. In relation to trypomastigotes, BZT4 was more selective and effective than the reference drug (benznidazole) during this infective stage, apparently due to the synergistic action of the CF3 and COOH substituents in the molecule. During the first few hours post-administration of BZT4, parasitemia decreased by 40% in an in vivo model of short-term treatment, but parasite levels later returned to the basal state. In the long-term assessment, the compound did not produce a significant antiparasitic effect, only attaining a 30% reduction in parasitemia by day 20 with the dose of 16 mg/kg. The toxicity test was based on repeated dosing of BZT4 (administered orally) during 21 days, which did not cause liver damage. However, the compound altered the concentration of proteins and the proteinic profile of neuronal cells in vitro, perhaps leading to an effect on the central nervous system. Further research on the low trypanocidal activity in vivo compared to the better in vitro effect could possibly facilitate molecular redesign to improve trypanocidal activity.


Subject(s)
Chagas Disease , Nitroimidazoles , Thiazoles , Trypanocidal Agents , Trypanosoma cruzi , Animals , Chagas Disease/drug therapy , Mice , Nitroimidazoles/therapeutic use , Nitroimidazoles/toxicity , Thiazoles/therapeutic use , Thiazoles/toxicity , Toxicity Tests , Trypanocidal Agents/therapeutic use , Trypanocidal Agents/toxicity , Trypanosoma cruzi/drug effects
11.
Expert Rev Anti Infect Ther ; 19(5): 563-569, 2021 05.
Article in English | MEDLINE | ID: mdl-33073640

ABSTRACT

INTRODUCTION: Microorganisms of clinical importance frequently develop resistance to drug therapy, now a growing problem. The experience with Mycobacterium tuberculosis is a representative example of increasing multi-drug resistance. To avoid reaching a crisis in which patients could be left without adequate treatment, a new strategy is needed. Anti-microbial therapy has historically targeted the mechanisms rather than origin of drug resistance, thus allowing microorganisms to adapt and survive. AREAS COVERED: This contribution analyses the historical development (1943-2020) of the evolution of multi-drug resistance by M. tuberculosis strains in light of Darwin's and Lamarck's theories of evolution. EXPERT OPINION: Regarding the molecular origin of microbial drug resistance, genetic mutations and epigenetic modifications are known to participate. The analysis of the history of drug resistance by M. tuberculosis evidences a gradual development of resistance to some antibiotics, undoubtedly due to random mutations together with natural selection based on environmental pressures (e.g., antibiotics), representing Darwin's idea. More rapid adaptation of M. tuberculosis to new antibiotic treatments has also occurred, probably because of heritable acquired characteristics, evidencing Lamarck's proposal. Therefore, microbial infections should be treated with an antibiotic producing null or low mutagenic activity along with a resistance inhibitor, preferably in a single medication.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Drug Resistance, Microbial/physiology , Mycobacterium tuberculosis/drug effects , Biological Evolution , Drug Resistance, Microbial/genetics , Epigenesis, Genetic , History, 20th Century , History, 21st Century , Humans , Mutation , Mycobacterium tuberculosis/genetics , Selection, Genetic/physiology
12.
Oxid Med Cell Longev ; 2020: 3970860, 2020.
Article in English | MEDLINE | ID: mdl-33110472

ABSTRACT

N-aryl maleimides can undergo a 1,4-Michael-type addition reaction with reduced glutathione (GSH), leading to a decreased concentration of GSH and an increased concentration of free radicals (FRs) in cells. GSH is a critical scavenging molecule responsible for protecting cells from oxidation and for maintaining redox homeostasis. N-aryl maleimides disturb redox homeostasis in cells because they scavenge thiol-containing molecules, especially GSH. This study aimed at measuring the concentrations of GSH and FRs by electronic paramagnetic resonance (EPR), in the brain and liver tissue of male Wistar rats (ex vivo) at different ages and after treatment with 3,5-dimaleimylbenzoic acid (3,5-DMB). Our results showed a relationship between age and the concentrations of GSH and FRs in cells. In young rats, the concentration of GSH was higher than in old rats, while the concentration of FRs was higher in adult rats than in young rats, suggesting an inverse relationship between GSH and FRs. On the other hand, the reaction of 3,5-DMB (an electrophilic maleimide) with cellular GSH increased the FR content. The results of this study contribute to the awareness that the process of aging implies not only a loss of tissue function but also essential changes in the molecular contents of cells, especially the concentrations of FRs and GSH.


Subject(s)
Aging , Free Radicals/metabolism , Glutathione/metabolism , Animals , Brain/drug effects , Brain/metabolism , Electron Spin Resonance Spectroscopy , Free Radicals/chemistry , Glutathione/chemistry , Liver/drug effects , Liver/metabolism , Male , Maleimides/pharmacology , Models, Biological , Oxidation-Reduction , Rats , Rats, Wistar
13.
Drug Dev Res ; 81(2): 256-266, 2020 04.
Article in English | MEDLINE | ID: mdl-31875337

ABSTRACT

Alzheimer's disease (AD) is clearly linked to the decline of acetylcholine (ACh) effects in the brain. These effects are regulated by the hydrolytic action of acetylcholinesterase (AChE). Therefore, a central palliative treatment of AD is the administration of AChE inhibitors although additional mechanisms are currently described and tested for generating advantageous therapeutic strategies. In this work, we tested new arylamides and arylimides as potential inhibitors of AChE using in silico tools. Then, these compounds were tested in vitro, and two selected compounds, C7 and C8, as well as propranolol showed inhibition of AChE. In addition, they demonstrated an advantageous acute toxicity profile compared to that of galantamine as a reference AChE inhibitor. in vivo evaluation of memory performance enhancement was performed in an animal model of cognitive disturbance with each of these compounds and propranolol individually as well as each compound combined with propranolol. Memory improvement was observed in each case, but without a significant additive effect with the combinations.


Subject(s)
Amides/administration & dosage , Cholinesterase Inhibitors/administration & dosage , Imides/administration & dosage , Memory Disorders/drug therapy , Amides/chemical synthesis , Amides/chemistry , Amides/therapeutic use , Animals , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/therapeutic use , Computer Simulation , Disease Models, Animal , Drug Therapy, Combination , Humans , Imides/chemical synthesis , Imides/chemistry , Imides/therapeutic use , Male , Molecular Conformation , Molecular Docking Simulation , Propranolol , Rats
14.
Article in English | MEDLINE | ID: mdl-31712204

ABSTRACT

Chagas disease (CD) is a human infection caused by Trypanosoma cruzi CD was traditionally endemic to the Americas; however, due to migration it has spread to countries where it is not endemic. The current chemotherapy to treat CD induces several side effects, and its effectiveness in the chronic phase of the disease is controversial. In this contribution, substituted phenylbenzothiazole derivatives were synthesized and biologically evaluated as trypanocidal agents against Trypanosoma cruzi The trypanocidal activities of the most promising compounds were determined through systematic in vitro screening, and their modes of action were determined as well. The physicochemical-structural characteristics responsible for the trypanocidal effects were identified, and their possible therapeutic application in Chagas disease is discussed. Our results show that the fluorinated compound 2-methoxy-4-[5-(trifluoromethyl)-1,3-benzothiazol-2-yl] phenol (BT10) has the ability to inhibit the proliferation of epimastigotes [IC50(Epi) = 23.1 ± 1.75 µM] and intracellular forms of trypomastigotes [IC50(Tryp) = 8.5 ± 2.9 µM] and diminishes the infection index by more than 80%. In addition, BT10 has the ability to selectively fragment 68% of the kinetoplastid DNA compared with 5% of nucleus DNA. The mode of action for BT10 on T. cruzi suggests that the development of fluorinated phenylbenzothiazole with electron-withdrawing substituent is a promising strategy for the design of trypanocidal drugs.


Subject(s)
Cell Cycle/drug effects , Chagas Disease/drug therapy , Thiazoles/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , CHO Cells , Chagas Disease/parasitology , Cricetulus , Halogenation , Humans , Thiazoles/chemistry , Trypanocidal Agents/chemistry , Trypanosoma cruzi/physiology
15.
Antimicrob Agents Chemother, v. 64, n. 2, e01742-19, fev. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2954

ABSTRACT

Chagas disease (CD) is a human infection caused by Trypanosoma cruzi. CD was traditionally endemic to the Americas; however, due to migration it has spread to countries where it is not endemic. The current chemotherapy to treat CD induces several side effects, and its effectiveness in the chronic phase of the disease is controversial. In this contribution, substituted phenylbenzothiazole derivatives were synthesized and biologically evaluated as trypanocidal agents against Trypanosoma cruzi. The trypanocidal activities of the most promising compounds were determined through systematic in vitro screening, and their modes of action were determined as well. The physicochemical-structural characteristics responsible for the trypanocidal effects were identified, and their possible therapeutic application in Chagas disease is discussed. Our results show that the fluorinated compound 2-methoxy-4-[5-(trifluoromethyl)-1,3-benzothiazol-2-yl] phenol (BT10) has the ability to inhibit the proliferation of epimastigotes [IC50(Epi) = 23.1 ± 1.75 µM] and intracellular forms of trypomastigotes [IC50(Tryp) = 8.5 ± 2.9 µM] and diminishes the infection index by more than 80%. In addition, BT10 has the ability to selectively fragment 68% of the kinetoplastid DNA compared with 5% of nucleus DNA. The mode of action for BT10 on T. cruzi suggests that the development of fluorinated phenylbenzothiazole with electron-withdrawing substituent is a promising strategy for the design of trypanocidal drugs.

16.
Antimicrob. Agents Chemother. ; 64(2): e01742-19, 2020.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17467

ABSTRACT

hagas disease (CD) is a human infection caused by Trypanosoma cruzi. CD was traditionally endemic to the Americas; however, due to migration it has spread to countries where it is not endemic. The current chemotherapy to treat CD induces several side effects, and its effectiveness in the chronic phase of the disease is controversial. In this contribution, substituted phenylbenzothiazole derivatives were synthesized and biologically evaluated as trypanocidal agents against Trypanosoma cruzi. The trypanocidal activities of the most promising compounds were determined through systematic in vitro screening, and their modes of action were determined as well. The physicochemical-structural characteristics responsible for the trypanocidal effects were identified, and their possible therapeutic application in Chagas disease is discussed. Our results show that the fluorinated compound 2-methoxy-4-[5-(trifluoromethyl)-1,3-benzothiazol-2-yl] phenol (BT10) has the ability to inhibit the proliferation of epimastigotes [IC50(Epi) = 23.1 ± 1.75 µM] and intracellular forms of trypomastigotes [IC50(Tryp) = 8.5 ± 2.9 µM] and diminishes the infection index by more than 80%. In addition, BT10 has the ability to selectively fragment 68% of the kinetoplastid DNA compared with 5% of nucleus DNA. The mode of action for BT10 on T. cruzi suggests that the development of fluorinated phenylbenzothiazole with electron-withdrawing substituent is a promising strategy for the design of trypanocidal drugs.

17.
J Mol Recognit ; 32(11): e2801, 2019 11.
Article in English | MEDLINE | ID: mdl-31353677

ABSTRACT

In the design of 1-phenylbenzimidazoles as model cyclooxygenase (COX) inhibitors, docking to a series of crystallographic COX structures was performed to evaluate their potential for high-affinity binding and to reproduce the interaction profile of well-known COX inhibitors. The effect of ligand-specific induced fit on the calculations was also studied. To quantitatively compare the pattern of interactions of model compounds to the profile of several cocrystallized COX inhibitors, a geometric parameter, denominated ligand-receptor contact distance (LRCD), was developed. The interaction profile of several model complexes showed similarity to the profile of COX complexes with inhibitors such as iodosuprofen, iodoindomethacin, diclofenac, and flurbiprofen. Shaping of high-affinity binding sites upon ligand-specific induced fit mostly determined both the affinity and the binding mode of the ligands in the docking calculations. The results suggest potential of 1-phenylbenzimidazole derivatives as COX inhibitors on the basis of their predicted affinity and interaction profile to COX enzymes. The analyses also provided insights into the role of induced fit in COX enzymes. While inhibitors produce different local structural changes at the COX ligand binding site, induced fit allows inhibitors in diverse chemical classes to share characteristic interaction patterns that ensure key contacts to be achieved. Different interaction patterns may also be associated with different inhibitory mechanisms.


Subject(s)
Benzimidazoles/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Benzimidazoles/chemistry , Crystallography, X-Ray , Cyclooxygenase Inhibitors/chemistry , Cyclooxygenase Inhibitors/pharmacology , Databases, Protein , Indomethacin/chemistry , Indomethacin/pharmacology , Ligands , Molecular Docking Simulation , Prostaglandin-Endoperoxide Synthases/chemistry , Thermodynamics
18.
Molecules ; 24(11)2019 May 30.
Article in English | MEDLINE | ID: mdl-31151186

ABSTRACT

Two 2,3-disubstituted benzofurans (1 and 2), analogs of gamma-aminobutyric acid (GABA), were synthesized to obtain their 2,3-dihydro derivatives from the Pd/C-driven catalytic reduction of the double bond in the furanoid ring. The synthesis produced surprising by-products. Therefore, theoretical calculations of global and local reactivity were performed based on Pearson's hard and soft acids and bases (HSAB) principle to understand the regioselectivity that occurred in the reduction of the olefinic carbons of the compounds. Local electrophilicity (ωk) was the most useful parameter for explaining the selectivity of the polar reactions. This local parameter was defined with the condensed Fukui function and redefined with the electrophilic (Pk+) Parr function. The similar patterns of both resulting sets of values helped to demonstrate the electrophilic behavior (soft acid) of the olefinic carbons in these compounds. The theoretical calculations, nuclear magnetic resonance, and resonance hybrids showed the moieties in each compound that are most susceptible to reduction.


Subject(s)
Benzofurans/chemistry , Models, Chemical , Oxidation-Reduction , Quantum Theory , Benzofurans/chemical synthesis , Catalysis , Chemistry Techniques, Synthetic , Magnetic Resonance Spectroscopy , Molecular Structure
19.
Med Chem ; 15(1): 77-86, 2019.
Article in English | MEDLINE | ID: mdl-29792150

ABSTRACT

BACKGROUND: Benzofurans are heterocyclic compounds with neurotropic activity. Some have been developed for the treatment of acute and degenerative neuronal injuries. OBJECTIVE: The study aimed to evaluate the in silico binding of some promising benzofurans on the GABA receptors, and the in vivo neurotropic activity of benzofuran analogues (BZF 6-10) of gamma-aminobutyric acid (GABA) on a seizure model. METHODS: The ligands with the best physicochemical attributes were docked on two GABA receptors (the alpha-1 subunit of GABAA-R and GBR1 subunit of GABAB-R). Selected benzofuran derivatives were synthesized by a multistep procedure and characterized. To examine the neurotropic effects, mice were pretreated with different concentrations of the compounds prior to PTZ- or 4- AP-induced seizures. We assessed acute toxicity, motor behavior, and the effects on seizures. RESULTS: The tested ligands that complied with Lipinski's rule of five were tested in silico with GABAA-R (ΔG = -5.51 to -5.84 kcal/mol) at the allosteric site for benzodiazepines. They bound to a similar cluster of residues as the reference compound (gaboxadol, ΔG = -5.51 kcal/mol). Synthesis was achieved with good overall yields (42-9.7%). Two compounds were selected for biological tests (BZF-7 and rac-BZF-10) on a mouse model of seizures, induced by pentylenetetrazol (PTZ) or 4-aminopyridine (4-AP). PTZ-induced seizures are associated with GABA receptors, and those 4-AP-induced with the blockage of the delayed rectifier-type potassium channel, which promotes the release of the NMDA-sensitive glutamatergic ionotropic receptor and other neurotransmitters. The biological assays demonstrated that BZF-7 and rac-BZF-10 do not protect against seizures. Indeed, BZF-7 increased the number of PTZ-induced seizures and decreased latency time. The 4-AP model apparently showed a potentiation of seizure effects after administration of the BZF-analogues, evidenced by the incidence and severity of the seizures and reduced latency time. CONCLUSION: The results suggest that the test compounds are GABAergic antagonists with stimulatory activity on the CNS.


Subject(s)
Benzofurans/pharmacology , Central Nervous System Stimulants/pharmacology , GABA-A Receptor Antagonists/pharmacology , GABA-B Receptor Antagonists/pharmacology , Animals , Benzofurans/chemical synthesis , Benzofurans/chemistry , Benzofurans/toxicity , Central Nervous System Stimulants/chemical synthesis , Central Nervous System Stimulants/chemistry , Central Nervous System Stimulants/toxicity , GABA-A Receptor Antagonists/chemical synthesis , GABA-A Receptor Antagonists/chemistry , GABA-A Receptor Antagonists/toxicity , GABA-B Receptor Antagonists/chemical synthesis , GABA-B Receptor Antagonists/chemistry , GABA-B Receptor Antagonists/toxicity , Humans , Ligands , Male , Mice , Molecular Docking Simulation , Receptors, GABA-A/chemistry , Receptors, GABA-B/chemistry
20.
Med Chem ; 15(1): 102-118, 2019.
Article in English | MEDLINE | ID: mdl-29793411

ABSTRACT

BACKGROUND: Thalidomide, the first synthesized phthalimide, has demonstrated sedative- hypnotic and antiepileptic effects on the central nervous system. N-substituted phthalimides have an interesting chemical structure that confers important biological properties. OBJECTIVE: Non-chiral (ortho and para bis-isoindoline-1,3-dione, phthaloylglycine) and chiral phthalimides (N-substituted with aspartate or glutamate) were synthesized and the sedative, anxiolytic and anticonvulsant effects were tested. METHOD: Homology modeling and molecular docking were employed to predict recognition of the analogues by hNMDA and mGlu receptors. The neuropharmacological activity was tested with the open field test and elevated plus maze (EPM). The compounds were tested in mouse models of acute convulsions induced either by pentylenetetrazol (PTZ; 90 mg/kg) or 4-aminopyridine (4-AP; 10 mg/kg). RESULTS: The ortho and para non-chiral compounds at 562.3 and 316 mg/kg, respectively, decreased locomotor activity. Contrarily, the chiral compounds produced excitatory effects. Increased locomotor activity was found with S-TGLU and R-TGLU at 100, 316 and 562.3 mg/kg, and S-TASP at 316 and 562.3 mg/kg. These molecules showed no activity in the EPM test or PTZ model. In the 4-AP model, however, S-TGLU (237.1, 316 and 421.7 mg/kg) as well as S-TASP and R-TASP (316 mg/kg) lowered the convulsive and death rate. CONCLUSION: The chiral compounds exhibited a non-competitive NMDAR antagonist profile and the non-chiral molecules possessed selective sedative properties. The NMDAR exhibited stereoselectivity for S-TGLU while it is not a preference for the aspartic derivatives. The results appear to be supported by the in silico studies, which evidenced a high affinity of phthalimides for the hNMDAR and mGluR type 1.


Subject(s)
Anti-Anxiety Agents/pharmacology , Anticonvulsants/pharmacology , Hypnotics and Sedatives/pharmacology , Phthalimides/pharmacology , Animals , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/chemistry , Anticonvulsants/chemical synthesis , Anticonvulsants/chemistry , Humans , Hypnotics and Sedatives/chemical synthesis , Hypnotics and Sedatives/chemistry , Ligands , Locomotion/drug effects , Male , Mice , Molecular Docking Simulation , Phthalimides/chemical synthesis , Phthalimides/chemistry , Receptors, Metabotropic Glutamate/chemistry , Receptors, N-Methyl-D-Aspartate/chemistry , Seizures/drug therapy , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...