Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
1.
EMBO Mol Med ; 16(7): 1560-1578, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38898234

ABSTRACT

Circulating tumor DNA (ctDNA) is the cornerstone of liquid biopsy diagnostics, revealing clinically relevant genomic aberrations from blood of cancer patients. Genomic analysis of single circulating tumor cells (CTCs) could provide additional insights into intra-patient heterogeneity, but it requires whole-genome amplification (WGA) of DNA, which might introduce bias. Here, we describe a novel approach based on mass spectrometry for mutation detection from individual CTCs not requiring WGA and complex bioinformatics pipelines. After establishment of our protocol on tumor cell line-derived single cells, it was validated on CTCs of 33 metastatic melanoma patients and the mutations were compared to those obtained from tumor tissue and ctDNA. Although concordance with tumor tissue was superior for ctDNA over CTC analysis, a larger number of mutations were found within CTCs compared to ctDNA (p = 0.039), including mutations in melanoma driver genes, or those associated with resistance to therapy or metastasis. Thus, our results demonstrate proof-of-principle data that CTC analysis can provide clinically relevant genomic information that is not redundant to tumor tissue or ctDNA analysis.


Subject(s)
Circulating Tumor DNA , Melanoma , Mutation , Neoplastic Cells, Circulating , Humans , Melanoma/genetics , Melanoma/pathology , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , DNA Mutational Analysis , Cell Line, Tumor , Genetic Heterogeneity , Mass Spectrometry , Female , Male
2.
bioRxiv ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38895225

ABSTRACT

Selenocysteine (Sec) metabolism is crucial for cellular function and ferroptosis prevention and has traditionally been thought to begin with the uptake of the Sec carrier selenoprotein P (SELENOP). Following uptake, Sec released from SELENOP undergoes metabolisation via selenocysteine lyase (SCLY), producing selenide, a substrate used by selenophosphate synthetase 2 (SEPHS2), which provides the essential selenium donor - selenophosphate - for the biosynthesis of the selenocysteine tRNA. Here, we report the discovery of an alternative pathway mediating Sec metabolisation that is independent of SCLY and mediated by peroxiredoxin 6 (PRDX6). Mechanistically, we demonstrate that PRDX6 can readily react with selenide and interact with SEPHS2, potentially acting as a selenium delivery system. Moreover, we demonstrate the presence and functional significance of this alternative route in cancer cells where we reveal a notable association between elevated expression of PRDX6 with a highly aggressive neuroblastoma subtype. Altogether, our study sheds light on a previously unrecognized aspect of Sec metabolism and its implications in ferroptosis, offering new avenues for therapeutic exploitation.

3.
Mol Cancer ; 23(1): 93, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720314

ABSTRACT

BACKGROUND: Circulating tumor cells (CTCs) hold immense promise for unraveling tumor heterogeneity and understanding treatment resistance. However, conventional methods, especially in cancers like non-small cell lung cancer (NSCLC), often yield low CTC numbers, hindering comprehensive analyses. This study addresses this limitation by employing diagnostic leukapheresis (DLA) to cancer patients, enabling the screening of larger blood volumes. To leverage DLA's full potential, this study introduces a novel approach for CTC enrichment from DLAs. METHODS: DLA was applied to six advanced stage NSCLC patients. For an unbiased CTC enrichment, a two-step approach based on negative depletion of hematopoietic cells was used. Single-cell (sc) whole-transcriptome sequencing was performed, and CTCs were identified based on gene signatures and inferred copy number variations. RESULTS: Remarkably, this innovative approach led to the identification of unprecedented 3,363 CTC transcriptomes. The extensive heterogeneity among CTCs was unveiled, highlighting distinct phenotypes related to the epithelial-mesenchymal transition (EMT) axis, stemness, immune responsiveness, and metabolism. Comparison with sc transcriptomes from primary NSCLC cells revealed that CTCs encapsulate the heterogeneity of their primary counterparts while maintaining unique CTC-specific phenotypes. CONCLUSIONS: In conclusion, this study pioneers a transformative method for enriching CTCs from DLA, resulting in a substantial increase in CTC numbers. This allowed the creation of the first-ever single-cell whole transcriptome in-depth characterization of the heterogeneity of over 3,300 NSCLC-CTCs. The findings not only confirm the diagnostic value of CTCs in monitoring tumor heterogeneity but also propose a CTC-specific signature that can be exploited for targeted CTC-directed therapies in the future. This comprehensive approach signifies a major leap forward, positioning CTCs as a key player in advancing our understanding of cancer dynamics and paving the way for tailored therapeutic interventions.


Subject(s)
Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung , Leukapheresis , Lung Neoplasms , Neoplastic Cells, Circulating , Phenotype , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Single-Cell Analysis/methods , Transcriptome , Epithelial-Mesenchymal Transition/genetics , Gene Expression Profiling , Cell Line, Tumor
4.
Mol Oncol ; 18(3): 475-478, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38375990

ABSTRACT

Acute myeloid leukemia (AML) therapy is undergoing rapid development, but primary and acquired resistance to therapy complicates the prospect of a durable cure. Recent functional and single-cell multi-omics approaches have greatly expanded our knowledge of the diversity of lineage trajectories in AML settings. AML cells range from undifferentiated stem-like cells to more differentiated myeloid or megakaryocyte/erythroid cells. Current clinically relevant drugs predominantly target the myeloid progenitor lineage, while monocyte- or stem cell-like states can evade current AML treatment and may be targeted in the future with lineage-specific inhibitors. The extent of aberrant lineage plasticity upon therapeutic pressure in AML cells in conjunction with hijacking of normal differentiation pathways is still a poorly understood topic. Insights into the mechanisms of lineage plasticity of AML stem cells could identify both therapy-specific and cross-drug resistance pathways and reveal novel strategies to overcome them.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/drug therapy , Cell Differentiation , Stem Cells/metabolism , Neoplastic Stem Cells/metabolism
5.
Nature ; 626(7998): 401-410, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38297129

ABSTRACT

Ferroptosis is a form of cell death that has received considerable attention not only as a means to eradicate defined tumour entities but also because it provides unforeseen insights into the metabolic adaptation that tumours exploit to counteract phospholipid oxidation1,2. Here, we identify proferroptotic activity of 7-dehydrocholesterol reductase (DHCR7) and an unexpected prosurvival function of its substrate, 7-dehydrocholesterol (7-DHC). Although previous studies suggested that high concentrations of 7-DHC are cytotoxic to developing neurons by favouring lipid peroxidation3, we now show that 7-DHC accumulation confers a robust prosurvival function in cancer cells. Because of its far superior reactivity towards peroxyl radicals, 7-DHC effectively shields (phospho)lipids from autoxidation and subsequent fragmentation. We provide validation in neuroblastoma and Burkitt's lymphoma xenografts where we demonstrate that the accumulation of 7-DHC is capable of inducing a shift towards a ferroptosis-resistant state in these tumours ultimately resulting in a more aggressive phenotype. Conclusively, our findings provide compelling evidence of a yet-unrecognized antiferroptotic activity of 7-DHC as a cell-intrinsic mechanism that could be exploited by cancer cells to escape ferroptosis.


Subject(s)
Burkitt Lymphoma , Dehydrocholesterols , Ferroptosis , Neuroblastoma , Animals , Humans , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Cell Survival , Dehydrocholesterols/metabolism , Lipid Peroxidation , Neoplasm Transplantation , Neuroblastoma/metabolism , Neuroblastoma/pathology , Oxidation-Reduction , Phenotype , Reproducibility of Results
6.
Clin Transl Sci ; 16(12): 2483-2493, 2023 12.
Article in English | MEDLINE | ID: mdl-37920921

ABSTRACT

Expression of CYP3A5 protein is a basal and acquired resistance mechanism of pancreatic ductal adenocarcinoma cells conferring protection against the CYP3A and CYP2C8 substrate paclitaxel through metabolic degradation. Inhibition of CYP3A isozymes restores the cells sensitivity to paclitaxel. The combination of gemcitabine and nab-paclitaxel is an established regimen for the treatment of metastasized or locally advanced inoperable pancreatic cancer. Cobicistat is a CYP3A inhibitor developed for the pharmacoenhancement of protease inhibitors. The addition of cobicistat to gemcitabine and nab-paclitaxel may increase the antitumor effect. We will conduct a phase I dose escalation trial with a classical 3 + 3 design to investigate the safety, tolerability, and pharmacokinetics (PKs) of gemcitabine, nab-paclitaxel, and cobicistat. Although the doses of gemcitabine (1000 mg/m2 ) and cobicistat (150 mg) are fixed, three dose levels of nab-paclitaxel (75, 100, and 125 mg/m2 ) will be explored to account for a potential PK drug interaction. After the dose escalation phase, we will set the recommended dose for expansion (RDE) and treat up to nine patients in an expansion part of the trial. The trial is registered under the following identifiers EudraCT-Nr. 2019-001439-29, drks.de: DRKS00029409, and ct.gov: NCT05494866. Overcoming resistance to paclitaxel by CYP3A5 inhibition may lead to an increased efficacy of the gemcitabine and nab-paclitaxel regimen. Safety, efficacy, PK, and RDE data need to be acquired before investigating this combination in a large-scale clinical study.


Subject(s)
Carcinoma, Pancreatic Ductal , Cytostatic Agents , Pancreatic Neoplasms , Humans , Gemcitabine , Cytochrome P-450 CYP3A , Cytochrome P-450 CYP3A Inhibitors , Cytostatic Agents/therapeutic use , Deoxycytidine/adverse effects , Cobicistat , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Paclitaxel/adverse effects , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Clinical Trials, Phase I as Topic
7.
Sci Adv ; 9(35): eadg1812, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37656789

ABSTRACT

This report demonstrates a novel class of innate immune cells designated "variable immunoreceptor-expressing myeloids" (VIREMs). Using single-cell transcriptomics and genome-wide epigenetic profiling, we establish that VIREMs are myeloid cells unrelated to lymphocytes. We visualize the phenotype of B-VIREMs that are capable of genetically recombining and expressing antibody genes, the exclusive hallmark function of B lymphocytes. These cells, designated B-VIREMs, display monoclonal antibody cell surface signatures and regularly circulate in the blood of healthy individuals. Single-cell data reveal clonal expansion of circulating B-VIREMs as a dynamic response to disease stimuli. Live-cell imaging models suggest that B-VIREMs load their own Fc receptors with endogenous antibodies during vesicle transport to the cell surface. A first cloned B-VIREM-derived antibody (Vab1) specifically binds stomatin, a ubiquitous scaffold protein that is strictly expressed intracellularly, allowing Vab1-bearing macrophages to phagocytose cell debris without requiring prior opsonization. Our results suggest important antigen-specific tissue maintenance functionalities in these innate immune cells.

8.
EMBO Mol Med ; 15(8): e18014, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37435859

ABSTRACT

Ferroptosis has emerged as an attractive strategy in cancer therapy. Understanding the operational networks regulating ferroptosis may unravel vulnerabilities that could be harnessed for therapeutic benefit. Using CRISPR-activation screens in ferroptosis hypersensitive cells, we identify the selenoprotein P (SELENOP) receptor, LRP8, as a key determinant protecting MYCN-amplified neuroblastoma cells from ferroptosis. Genetic deletion of LRP8 leads to ferroptosis as a result of an insufficient supply of selenocysteine, which is required for the translation of the antiferroptotic selenoprotein GPX4. This dependency is caused by low expression of alternative selenium uptake pathways such as system Xc- . The identification of LRP8 as a specific vulnerability of MYCN-amplified neuroblastoma cells was confirmed in constitutive and inducible LRP8 knockout orthotopic xenografts. These findings disclose a yet-unaccounted mechanism of selective ferroptosis induction that might be explored as a therapeutic strategy for high-risk neuroblastoma and potentially other MYCN-amplified entities.


Subject(s)
Ferroptosis , Neuroblastoma , Humans , Cell Line, Tumor , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/genetics , Neuroblastoma/drug therapy , Selenocysteine/therapeutic use , Animals
9.
Leukemia ; 37(8): 1611-1625, 2023 08.
Article in English | MEDLINE | ID: mdl-37414921

ABSTRACT

Venetoclax/azacitidine combination therapy is effective in acute myeloid leukemia (AML) and tolerable for older, multimorbid patients. Despite promising response rates, many patients do not achieve sustained remission or are upfront refractory. Identification of resistance mechanisms and additional therapeutic targets represent unmet clinical needs. By using a genome-wide CRISPR/Cas9 library screen targeting 18,053 protein- coding genes in a human AML cell line, various genes conferring resistance to combined venetoclax/azacitidine treatment were identified. The ribosomal protein S6 kinase A1 (RPS6KA1) was among the most significantly depleted sgRNA-genes in venetoclax/azacitidine- treated AML cells. Addition of the RPS6KA1 inhibitor BI-D1870 to venetoclax/azacitidine decreased proliferation and colony forming potential compared to venetoclax/azacitidine alone. Furthermore, BI-D1870 was able to completely restore the sensitivity of OCI-AML2 cells with acquired resistance to venetoclax/azacitidine. Analysis of cell surface markers revealed that RPS6KA1 inhibition efficiently targeted monocytic blast subclones as a potential source of relapse upon venetoclax/azacitidine treatment. Taken together, our results suggest RPS6KA1 as mediator of resistance towards venetoclax/azacitidine and additional RPS6KA1 inhibition as strategy to prevent or overcome resistance.


Subject(s)
Azacitidine , Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute , Humans , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Azacitidine/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Ribosomal Protein S6 Kinases , Ribosomal Protein S6 Kinases, 90-kDa , RNA, Guide, CRISPR-Cas Systems
10.
Haematologica ; 108(12): 3308-3320, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37381752

ABSTRACT

Clonal hematopoiesis (CH) is an age-related condition driven by stem and progenitor cells harboring recurrent mutations linked to myeloid neoplasms. Currently, potential effects on hematopoiesis, stem cell function and regenerative potential under stress conditions are unknown. We performed targeted DNA sequencing of 457 hematopoietic stem cell grafts collected for autologous stem cell transplantation (ASCT) in myeloma patients and correlated our findings with high-dimensional longitudinal clinical and laboratory data (26,510 data points for blood cell counts/serum values in 25 days around transplantation). We detected CHrelated mutations in 152 patients (33.3%). Since many patients (n=54) harbored multiple CH mutations in one or more genes, we applied a non-negative matrix factorization (NMF) clustering algorithm to identify genes that are commonly co-mutated in an unbiased approach. Patients with CH were assigned to one of three clusters (C1-C3) and compared to patients without CH (C0) in a gene specific manner. To study the dynamics of blood cell regeneration following ASCT, we developed a time-dependent linear mixed effect model to validate differences in blood cell count trajectories amongst different clusters. The results demonstrated that C2, composed of patients with DNMT3A and PPM1D single and co-mutated CH, correlated with reduced stem cell yields and delayed platelet count recovery following ASCT. Also, the benefit of maintenance therapy was particularly strong in C2 patients. Taken together, these data indicate an impaired regenerative potential of hematopoietic stem cell grafts harboring CH with DNMT3A and PPM1D mutations.


Subject(s)
Clonal Hematopoiesis , Hematopoietic Stem Cell Transplantation , Humans , Transplantation, Autologous , Hematopoiesis/genetics , Mutation , Regeneration , Protein Phosphatase 2C/genetics
11.
Cell Rep ; 42(6): 112533, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37257449

ABSTRACT

The acquisition of mesenchymal traits is considered a hallmark of breast cancer progression. However, the functional relevance of epithelial-to-mesenchymal transition (EMT) remains controversial and context dependent. Here, we isolate epithelial and mesenchymal populations from human breast cancer metastatic biopsies and assess their functional potential in vivo. Strikingly, progressively decreasing epithelial cell adhesion molecule (EPCAM) levels correlate with declining disease propagation. Mechanistically, we find that persistent EPCAM expression marks epithelial clones that resist EMT induction and propagate competitively. In contrast, loss of EPCAM defines clones arrested in a mesenchymal state, with concomitant suppression of tumorigenicity and metastatic potential. This dichotomy results from distinct clonal trajectories impacting global epigenetic programs that are determined by the interplay between human ZEB1 and its target GRHL2. Collectively, our results indicate that susceptibility to irreversible EMT restrains clonal propagation, whereas resistance to mesenchymal reprogramming sustains disease spread in multiple models of human metastatic breast cancer, including patient-derived cells in vivo.


Subject(s)
Breast Neoplasms , Humans , Female , Epithelial Cell Adhesion Molecule , Breast Neoplasms/pathology , Cell Line, Tumor , Breast/metabolism , Clone Cells/metabolism , Epithelial-Mesenchymal Transition
12.
Blood ; 142(1): 90-105, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37146239

ABSTRACT

RNA-binding proteins (RBPs) form a large and diverse class of factors, many members of which are overexpressed in hematologic malignancies. RBPs participate in various processes of messenger RNA (mRNA) metabolism and prevent harmful DNA:RNA hybrids or R-loops. Here, we report that PIWIL4, a germ stem cell-associated RBP belonging to the RNase H-like superfamily, is overexpressed in patients with acute myeloid leukemia (AML) and is essential for leukemic stem cell function and AML growth, but dispensable for healthy human hematopoietic stem cells. In AML cells, PIWIL4 binds to a small number of known piwi-interacting RNA. Instead, it largely interacts with mRNA annotated to protein-coding genic regions and enhancers that are enriched for genes associated with cancer and human myeloid progenitor gene signatures. PIWIL4 depletion in AML cells downregulates the human myeloid progenitor signature and leukemia stem cell (LSC)-associated genes and upregulates DNA damage signaling. We demonstrate that PIWIL4 is an R-loop resolving enzyme that prevents R-loop accumulation on a subset of AML and LSC-associated genes and maintains their expression. It also prevents DNA damage, replication stress, and activation of the ATR pathway in AML cells. PIWIL4 depletion potentiates sensitivity to pharmacological inhibition of the ATR pathway and creates a pharmacologically actionable dependency in AML cells.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/pathology , Hematopoietic Stem Cells/metabolism , Cell Proliferation , Genomics , RNA, Messenger/metabolism , Neoplastic Stem Cells/pathology
13.
Cells Dev ; 174: 203843, 2023 06.
Article in English | MEDLINE | ID: mdl-37080459

ABSTRACT

Endothelial protein C receptor (EPCR) has emerged as one of the most conserved and reliable surface markers for the prospective identification and isolation of hematopoietic stem cells (HSCs). Prior studies have consistently demonstrated that EPCR expression enriches HSCs capable of long-term multilineage repopulation in both mouse and human across different hematopoietic tissues, including bone marrow (BM), fetal liver and ex vivo HSC expansion cultures. However, little is known about the expression profiles of EPCR in multipotent progenitor (MPP) populations located immediately downstream of HSCs in the hematopoietic hierarchy and which play a major role in sustaining lifelong blood cell production. Here, we incorporate EPCR antibody detection into a multi-parameter flow cytometric panel, which allows accurate identification of HSCs and five MPP subsets (MPP1-5) in mouse BM. Our data reveal that all MPP populations contain EPCR-expressing cells. Multipotent MPP1 and MPP5 contain higher proportion of EPCR+ cells compared to the more lineage-biased MPP2-4. Notably, high expression of EPCR enriches phenotypic HSC and MPP5, but not MPP1. Comparison of EPCR expression profiles between young and old BM reveals ageing mediated expansion of EPCR-expressing cells only in HSCs, but not in any of the MPP populations. Collectively, our study provides a comprehensive characterization of the surface expression pattern of EPCR in mouse HSC and MPP1-5 cells during normal and aged hematopoiesis.


Subject(s)
Bone Marrow , Hematopoietic Stem Cells , Aged , Animals , Humans , Mice , Bone Marrow/metabolism , Endothelial Protein C Receptor/genetics , Endothelial Protein C Receptor/metabolism , Hematopoietic Stem Cells/metabolism , Multipotent Stem Cells/metabolism , Prospective Studies
14.
Nat Commun ; 14(1): 2353, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37095087

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) frequently metastasizes into the peritoneum, which contributes to poor prognosis. Metastatic spreading is promoted by cancer cell plasticity, yet its regulation by the microenvironment is incompletely understood. Here, we show that the presence of hyaluronan and proteoglycan link protein-1 (HAPLN1) in the extracellular matrix enhances tumor cell plasticity and PDAC metastasis. Bioinformatic analysis showed that HAPLN1 expression is enriched in the basal PDAC subtype and associated with worse overall patient survival. In a mouse model for peritoneal carcinomatosis, HAPLN1-induced immunomodulation favors a more permissive microenvironment, which accelerates the peritoneal spread of tumor cells. Mechanistically, HAPLN1, via upregulation of tumor necrosis factor receptor 2 (TNFR2), promotes TNF-mediated upregulation of Hyaluronan (HA) production, facilitating EMT, stemness, invasion and immunomodulation. Extracellular HAPLN1 modifies cancer cells and fibroblasts, rendering them more immunomodulatory. As such, we identify HAPLN1 as a prognostic marker and as a driver for peritoneal metastasis in PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Peritoneal Neoplasms , Mice , Animals , Peritoneum/metabolism , Peritoneal Neoplasms/pathology , Hyaluronic Acid , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Neoplasm Metastasis/pathology , Gene Expression Regulation, Neoplastic , Tumor Microenvironment , Pancreatic Neoplasms
15.
Cell Stem Cell ; 30(5): 706-721.e8, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37098346

ABSTRACT

Inter-patient variability and the similarity of healthy and leukemic stem cells (LSCs) have impeded the characterization of LSCs in acute myeloid leukemia (AML) and their differentiation landscape. Here, we introduce CloneTracer, a novel method that adds clonal resolution to single-cell RNA-seq datasets. Applied to samples from 19 AML patients, CloneTracer revealed routes of leukemic differentiation. Although residual healthy and preleukemic cells dominated the dormant stem cell compartment, active LSCs resembled their healthy counterpart and retained erythroid capacity. By contrast, downstream myeloid progenitors constituted a highly aberrant, disease-defining compartment: their gene expression and differentiation state affected both the chemotherapy response and leukemia's ability to differentiate into transcriptomically normal monocytes. Finally, we demonstrated the potential of CloneTracer to identify surface markers misregulated specifically in leukemic cells. Taken together, CloneTracer reveals a differentiation landscape that mimics its healthy counterpart and may determine biology and therapy response in AML.


Subject(s)
Leukemia, Myeloid, Acute , Multiomics , Humans , Leukemia, Myeloid, Acute/genetics , Cell Differentiation , Neoplastic Stem Cells/metabolism
16.
Life Sci Alliance ; 6(7)2023 07.
Article in English | MEDLINE | ID: mdl-37105715

ABSTRACT

MYC is a pleiotropic transcription factor involved in cancer, cell proliferation, and metabolism. Its regulation and function in NK cells, which are innate cytotoxic lymphocytes important to control viral infections and cancer, remain poorly defined. Here, we show that mice deficient for Myc in NK cells presented a severe reduction in these lymphocytes. Myc was required for NK cell development and expansion in response to the key cytokine IL-15, which induced Myc through transcriptional and posttranslational mechanisms. Mechanistically, Myc ablation in vivo largely impacted NK cells' ribosomagenesis, reducing their translation and expansion capacities. Similar results were obtained by inhibiting MYC in human NK cells. Impairing translation by pharmacological intervention phenocopied the consequences of deleting or blocking MYC in vitro. Notably, mice lacking Myc in NK cells exhibited defective anticancer immunity, which reflected their decreased numbers of mature NK cells exerting suboptimal cytotoxic functions. These results indicate that MYC is a central node in NK cells, connecting IL-15 to translational fitness, expansion, and anticancer immunity.


Subject(s)
Interleukin-15 , Killer Cells, Natural , Animals , Humans , Mice , Cytokines/metabolism , Gene Expression Regulation , Interleukin-15/genetics , Interleukin-15/metabolism , Signal Transduction
17.
J Proteome Res ; 22(4): 1213-1230, 2023 04 07.
Article in English | MEDLINE | ID: mdl-36926972

ABSTRACT

In cancer metastasis, single circulating tumor cells (CTCs) in the blood and disseminated tumor cells (DTCs) in the bone marrow mediate cancer metastasis. Because suitable biomarker proteins are lacking, CTCs and DTCs with mesenchymal attributes are difficult to isolate from the bulk of normal blood cells. To establish a procedure allowing the isolation of such cells, we analyzed the cell line BC-M1 established from DTCs in the bone marrow of a breast cancer patient by stable isotope labeling by amino acids in cell culture (SILAC) and mass spectrometry. We found high levels of the transmembrane protein CUB domain-containing protein 1 (CDCP1) in breast cancer cell lines with mesenchymal attributes. Peripheral blood mononuclear cells were virtually negative for CDCP1. Confirmation in vivo by CellSearch revealed CDCP1-positive CTCs in 8 of 30 analyzed breast cancer patients. Only EpCam-positive CTCs were enriched by CellSearch. Using the extracellular domain of CDCP1, we established a magnetic-activated cell sorting (MACS) approach enabling also the enrichment of EpCam-negative CTCs. Thus, our approach is particularly suited for the isolation of mesenchymal CTCs with downregulated epithelial cancer that occur, for example, in triple-negative breast cancer patients who are prone to therapy failure.


Subject(s)
Breast Neoplasms , Neoplastic Cells, Circulating , Humans , Female , Neoplastic Cells, Circulating/metabolism , Breast Neoplasms/pathology , Epithelial Cell Adhesion Molecule , Leukocytes, Mononuclear , MCF-7 Cells , Biomarkers, Tumor , Neoplasm Metastasis/pathology , Antigens, Neoplasm , Cell Adhesion Molecules
18.
Cancer Discov ; 13(6): 1408-1427, 2023 06 02.
Article in English | MEDLINE | ID: mdl-36892565

ABSTRACT

The BCL2 inhibitor venetoclax (VEN) in combination with azacitidine (5-AZA) is currently transforming acute myeloid leukemia (AML) therapy. However, there is a lack of clinically relevant biomarkers that predict response to 5-AZA/VEN. Here, we integrated transcriptomic, proteomic, functional, and clinical data to identify predictors of 5-AZA/VEN response. Although cultured monocytic AML cells displayed upfront resistance, monocytic differentiation was not clinically predictive in our patient cohort. We identified leukemic stem cells (LSC) as primary targets of 5-AZA/VEN whose elimination determined the therapy outcome. LSCs of 5-AZA/VEN-refractory patients displayed perturbed apoptotic dependencies. We developed and validated a flow cytometry-based "Mediators of apoptosis combinatorial score" (MAC-Score) linking the ratio of protein expression of BCL2, BCL-xL, and MCL1 in LSCs. MAC scoring predicts initial response with a positive predictive value of more than 97% associated with increased event-free survival. In summary, combinatorial levels of BCL2 family members in AML-LSCs are a key denominator of response, and MAC scoring reliably predicts patient response to 5-AZA/VEN. SIGNIFICANCE: Venetoclax/azacitidine treatment has become an alternative to standard chemotherapy for patients with AML. However, prediction of response to treatment is hampered by the lack of clinically useful biomarkers. Here, we present easy-to-implement MAC scoring in LSCs as a novel strategy to predict treatment response and facilitate clinical decision-making. This article is highlighted in the In This Issue feature, p. 1275.


Subject(s)
Leukemia, Myeloid, Acute , Proteomics , Humans , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Azacitidine/pharmacology , Azacitidine/therapeutic use , Stem Cells/metabolism , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
19.
Development ; 150(20)2023 10 15.
Article in English | MEDLINE | ID: mdl-36897562

ABSTRACT

Reactive oxygen species (ROS) are generated from NADPH oxidases and mitochondria; they are generally harmful for stem cells. Spermatogonial stem cells (SSCs) are unique among tissue-stem cells because they undergo ROS-dependent self-renewal via NOX1 activation. However, the mechanism by which SSCs are protected from ROS remains unknown. Here, we demonstrate a crucial role for Gln in ROS protection using cultured SSCs derived from immature testes. Measurements of amino acids required for SSC cultures revealed the indispensable role of Gln in SSC survival. Gln induced Myc expression to drive SSC self-renewal in vitro, whereas Gln deprivation triggered Trp53-dependent apoptosis and impaired SSC activity. However, apoptosis was attenuated in cultured SSCs that lacked NOX1. In contrast, cultured SSCs lacking Top1mt mitochondria-specific topoisomerase exhibited poor mitochondrial ROS production and underwent apoptosis. Gln deprivation reduced glutathione production; supra-molar Asn supplementation allowed offspring production from SSCs cultured without Gln. Therefore, Gln ensures ROS-dependent SSC-self-renewal by providing protection against NOX1 and inducing Myc.


Subject(s)
Glutamine , Spermatogonia , Male , Mice , Animals , Spermatogonia/metabolism , Glutamine/metabolism , Reactive Oxygen Species/metabolism , Cell Proliferation , Stem Cells , Cells, Cultured
20.
Haematologica ; 108(2): 353-366, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36722405

ABSTRACT

A major obstacle in the treatment of acute myeloid leukemia (AML) is refractory disease or relapse after achieving remission. The latter arises from a few therapy-resistant cells within minimal residual disease (MRD). Resistant cells with long-term self-renewal capacity that drive clonal outgrowth are referred to as leukemic stem cells (LSC). The cancer stem cell concept considers LSC as relapse-initiating cells residing at the top of each genetically defined AML subclone forming epigenetically controlled downstream hierarchies. LSC display significant phenotypic and epigenetic plasticity, particularly in response to therapy stress, which results in various mechanisms mediating treatment resistance. Given the inherent chemotherapy resistance of LSC, targeted strategies must be incorporated into first-line regimens to prevent LSC-mediated AML relapse. The combination of venetoclax and azacitidine is a promising current strategy for the treatment of AML LSC. Nevertheless, the selection of patients who would benefit either from standard chemotherapy or venetoclax + azacitidine treatment in first-line therapy has yet to be established and the mechanisms of resistance still need to be discovered and overcome. Clinical trials are currently underway that investigate LSC susceptibility to first-line therapies. The era of single-cell multi-omics has begun to uncover the complex clonal and cellular architectures and associated biological networks. This should lead to a better understanding of the highly heterogeneous AML at the inter- and intra-patient level and identify resistance mechanisms by longitudinal analysis of patients' samples. This review discusses LSC biology and associated resistance mechanisms, potential therapeutic LSC vulnerabilities and current clinical trial activities.


Subject(s)
Leukemia, Myeloid, Acute , Sulfonamides , Humans , Azacitidine/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Neoplastic Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL