Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7846, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057298

ABSTRACT

For trace gas sensing and precision spectroscopy, optical cavities incorporating low-loss mirrors are indispensable for path length and optical intensity enhancement. Optical interference coatings in the visible and near-infrared (NIR) spectral regions have achieved total optical losses below 2 parts per million (ppm), enabling a cavity finesse in excess of 1 million. However, such advancements have been lacking in the mid-infrared (MIR), despite substantial scientific interest. Here, we demonstrate a significant breakthrough in high-performance MIR mirrors, reporting substrate-transferred single-crystal interference coatings capable of cavity finesse values from 200 000 to 400 000 near 4.5 µm, with excess optical losses (scatter and absorption) below 5 ppm. In a first proof-of-concept demonstration, we achieve the lowest noise-equivalent absorption in a linear cavity ring-down spectrometer normalized by cavity length. This substantial improvement in performance will unlock a rich variety of MIR applications for atmospheric transport and environmental sciences, detection of fugitive emissions, process gas monitoring, breath-gas analysis, and verification of biogenic fuels and plastics.

2.
Opt Express ; 27(20): 28062-28074, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31684565

ABSTRACT

We demonstrate dual-comb generation from an all-polarization-maintaining dual-color ytterbium (Yb) fiber laser. Two pulse trains with center wavelengths at 1030 nm and 1060 nm respectively are generated within the same laser cavity with a repetition rate around 77 MHz. Dual-color operation is induced using a tunable mechanical spectral filter, which cuts the gain spectrum into two spectral regions that can be independently mode-locked. Spectral overlap of the two pulse trains is achieved outside the laser cavity by amplifying the 1030-nm pulses and broadening them in a nonlinear fiber. Spatially overlapping the two arms on a simple photodiode then generates a down-converted radio frequency comb. The difference in repetition rates between the two pulse trains and hence the line spacing of the down-converted comb can easily be tuned in this setup. This feature allows for a flexible adjustment of the tradeoff between non-aliasing bandwidth vs. measurement time in spectroscopy applications. Furthermore, we show that by fine-tuning the center-wavelengths of the two pulse trains, we are able to shift the down-converted frequency comb along the radio-frequency axis. The usability of this dual-comb setup is demonstrated by measuring the transmission of two different etalons while the laser is completely free-running.

3.
Article in English | MEDLINE | ID: mdl-31555337

ABSTRACT

We performed 7.5 weeks of path-integrated concentration measurements of CO2, CH4, H2O, and HDO over the city of Boulder, Colorado. An open-path dual-comb spectrometer simultaneously measured time-resolved data across a reference path, located near the mountains to the west of the city, and across an over-city path that intersected two-thirds of the city, including two major commuter arteries. By comparing the measured concentrations over the two paths when the wind is primarily out of the west, we observe daytime CO2 enhancements over the city. Given the warm weather and the measurement footprint, the dominant contribution to the CO2 enhancement is from city vehicle traffic. We use a Gaussian plume model combined with reported city traffic patterns to estimate city emissions of on-road CO2 as (6.2 ± 2.2) × 105 metric tons (t) CO2 yr-1 after correcting for non-traffic sources. Within the uncertainty, this value agrees with the city's bottom-up greenhouse gas inventory for the on-road vehicle sector of 4.5 × 105 t CO2 yr-1. Finally, we discuss experimental modifications that could lead to improved estimates from our path-integrated measurements.

4.
Atmos Meas Tech ; 10(9): 3295-3311, 2017.
Article in English | MEDLINE | ID: mdl-29276547

ABSTRACT

We present the first quantitative intercomparison between two open-path dual comb spectroscopy (DCS) instruments which were operated across adjacent 2-km open-air paths over a two-week period. We used DCS to measure the atmospheric absorption spectrum in the near infrared from 6021 to 6388 cm-1 (1565 to 1661 nm), corresponding to a 367 cm-1 bandwidth, at 0.0067 cm-1 sample spacing. The measured absorption spectra agree with each other to within 5×10-4 without any external calibration of either instrument. The absorption spectra are fit to retrieve concentrations for carbon dioxide (CO2), methane (CH4), water (H2O), and deuterated water (HDO). The retrieved dry mole fractions agree to 0.14% (0.57 ppm) for CO2, 0.35% (7 ppb) for CH4, and 0.40% (36 ppm) for H2O over the two-week measurement campaign, which included 23 °C outdoor temperature variations and periods of strong atmospheric turbulence. This agreement is at least an order of magnitude better than conventional active-source open-path instrument intercomparisons and is particularly relevant to future regional flux measurements as it allows accurate comparisons of open-path DCS data across locations and time. We additionally compare the open-path DCS retrievals to a WMO-calibrated cavity ringdown point sensor located along the path with good agreement. Short-term and long-term differences between the two systems are attributed, respectively, to spatial sampling discrepancies and to inaccuracies in the current spectral database used to fit the DCS data. Finally, the two-week measurement campaign yields diurnal cycles of CO2 and CH4 that are consistent with the presence of local sources of CO2 and absence of local sources of CH4.

5.
Optica ; 4(7): 724-728, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-29774228

ABSTRACT

We demonstrate a new technique for spatial mapping of multiple atmospheric gas species. This system is based on high-precision dual-comb spectroscopy to a retroreflector mounted on a flying multi-copter. We measure the atmospheric absorption over long open-air paths to the multi-copter with comb-tooth resolution over 1.57 to 1.66 pm, covering absorption bands of CO2, Cm, H2O and isotopologues. When combined with GPS-based path length measurements, a fit of the absorption spectra retrieves the dry mixing ratios versus position. Under well-mixed atmospheric conditions, retrievals from both horizontal and vertical paths show stable mixing ratios as expected. This approach can support future boundary layer studies as well as plume detection and source location.

6.
Opt Express ; 24(26): 30495-30504, 2016 Dec 26.
Article in English | MEDLINE | ID: mdl-28059397

ABSTRACT

We describe a dual-comb spectrometer that can operate independently of laboratory-based rf and optical frequency references but is nevertheless capable of ultra-high spectral resolution, high SNR, and frequency-accurate spectral measurements. The instrument is based on a "bootstrapped" frequency referencing scheme in which short-term optical phase coherence between combs is attained by referencing each to a free-running diode laser, whilst high frequency resolution and long-term accuracy is derived from a stable quartz oscillator. The sensitivity, stability and accuracy of this spectrometer were characterized using a multipass cell. We demonstrate comb-resolved spectra spanning from 140 THz (2.14 µm, 4670 cm-1) to 184 THz (1.63 µm, 6140 cm-1) in the near infrared with a frequency sampling of 200 MHz (0.0067 cm-1) and ~1 MHz frequency accuracy. High resolution spectra of water and carbon dioxide transitions at 1.77 µm, 1.96 µm and 2.06 µm show that the molecular transmission acquired with this system operating in the field-mode did not deviate from those measured when it was referenced to a maser and cavity-stabilized laser to within 5.6 × 10-4. When optimized for carbon dioxide quantification at 1.60 µm, a sensitivity of 2.8 ppm-km at 1 s integration time, improving to 0.10 ppm-km at 13 minutes of integration time was achieved.

SELECTION OF CITATIONS
SEARCH DETAIL