Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 13: 932642, 2022.
Article in English | MEDLINE | ID: mdl-35812961

ABSTRACT

Climacteric fruits display an increase in respiration and ethylene production during the onset of ripening, while such changes are minimal in non-climacteric fruits. Ethylene is a primary regulator of ripening in climacteric fruits. The ripening behavior and role of ethylene in blueberry (Vaccinium sp.) ripening is controversial. This work aimed to clarify the fruit ripening behavior and the associated role of ethylene in blueberry. Southern highbush (Vaccinium corymbosum hybrids) and rabbiteye (Vaccinium ashei) blueberry displayed an increase in the rate of respiration and ethylene evolution, both reaching a maxima around the Pink and Ripe stages of fruit development, consistent with climacteric fruit ripening behavior. Increase in ethylene evolution was associated with increases in transcript abundance of its biosynthesis genes, AMINOCYCLOPROPANE CARBOXYLATE (ACC) SYNTHASE1 (ACS1) and ACC OXIDASE2 (ACO2), implicating them in developmental ethylene production during ripening. Blueberry fruit did not display autocatalytic system 2 ethylene during ripening as ACS transcript abundance and ACC concentration were not enhanced upon treatment with an ethylene-releasing compound (ethephon). However, ACO transcript abundance was enhanced in response to ethephon, suggesting that ACO was not rate-limiting. Transcript abundance of multiple genes associated with ethylene signal transduction was upregulated concomitant with developmental increase in ethylene evolution, and in response to exogenous ethylene. As these changes require ethylene signal transduction, fruit ripening in blueberry appears to involve functional ethylene signaling. Together, these data indicate that blueberry fruit display atypical climacteric ripening, characterized by a respiratory climacteric, developmentally regulated but non-autocatalytic increase in ethylene evolution, and functional ethylene signaling.

2.
Plant Signal Behav ; 15(2): 1722447, 2020.
Article in English | MEDLINE | ID: mdl-32024420

ABSTRACT

Global water shortage seriously threatens rice growth especially in irrigated production areas. Association of plants with beneficial soil microbes is one strategy for plant adaption to environmental stresses. In this study, rice (Oryza sativa L.) plants were colonized by the beneficial root-colonizing endophytic fungus Piriformospora indica (P. indica). We demonstrate that grain yield were higher in P. indica-colonized rice plants compared to the uncolonized plants grown in soil. Moreover, P. indica effect on improving water stress tolerance in rice and its physiological mechanism were investigated in a hydroponic culture system. Polyethylene glycol (PEG) was applied to the culture solution to conduct the water stress condition. Water stress-induced leaf wilting and impairments in photosynthetic efficiency were diminished in P. indica-colonized plants. Furthermore, P. indica colonization promotes stomata closure and increases the leaf surface temperature under water stress. The malondialdehyde level (as an indicator for oxidative stress) was lower and the reduced to oxidized glutathione ratio was higher in P. indica-colonized and PEG-exposed rice plants compared to the uncolonized plants. Furthermore, the activities of the antioxidant enzymes catalase and glutathione reductase were up-regulated in inoculated rice seedlings under water stress. In conclusion, P. indica promotes rice performance under water stress by stomata closure and lower oxidative stress.


Subject(s)
Basidiomycota/physiology , Oryza/metabolism , Oryza/physiology , Oxidative Stress/physiology , Plant Stomata/metabolism , Plant Stomata/physiology , Polyethylene Glycols/chemistry , Reactive Oxygen Species/metabolism , Symbiosis/physiology , Temperature , Water/metabolism
3.
Opt Express ; 20(19): 21223-34, 2012 Sep 10.
Article in English | MEDLINE | ID: mdl-23037246

ABSTRACT

A 25 Gbits/s error-free on-off-keying (OOK) wireless link between an ultra high-speed W-band photonic transmitter-mixer (PTM) and a fast W-band envelope detector is demonstrated. At the transmission end, the high-speed PTM is developed with an active near-ballistic uni-traveling carrier photodiode (NBUTC-PD) integrated with broadband front-end circuitry via the flip-chip bonding technique. Compared to our previous work, the wireless data rate is significantly increased through the improvement on the bandwidth of the front-end circuitry together with the reduction of the intermediate-frequency (IF) driving voltage of the active NBUTC-PD. The demonstrated PTM has a record-wide IF modulation (DC-25 GHz) and optical-to-electrical fractional bandwidths (68-128 GHz, ~67%). At the receiver end, the demodulation is realized with an ultra-fast W-band envelope detector built with a zero-bias Schottky barrier diode with a record wide video bandwidth (37 GHz) and excellent sensitivity. The demonstrated PTM is expected to find applications in multi-gigabit short-range wireless communication.

SELECTION OF CITATIONS
SEARCH DETAIL