Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 17(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38998443

ABSTRACT

Increased usage of selective laser sintering (SLS) for the production of end-use functional components has generated a requirement of developing new materials and process improvements to improve the applicability of this technique. This article discusses a novel process wherein carbon black was applied to the surface of TPU powder to reduce the laser reflectivity during the SLS process. The printing was carried out with a preheating temperature of 75 °C, laser energy density of 0.028 J/mm2, incorporating a 0.4 wt % addition of carbon black to the TPU powder, and controlling the powder layer thickness at 125 µm. The mixed powder, after printing, shows a reflectivity of 13.81%, accompanied by the highest average density of 1.09 g/cm3, hardness of 78 A, tensile strength of 7.9 MPa, and elongation at break was 364.9%. Compared to commercial TPU powder, which lacks the carbon black coating, the reflectance decreased by 1.78%, mechanical properties improved by 33.9%, and there was a notable reduction in the porosity of the sintered product.

2.
ACS Appl Mater Interfaces ; 13(9): 11369-11384, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33625223

ABSTRACT

The inkjet printing of metal electrodes on polymer films is a desirable manufacturing process due to its simplicity but is limited by the lack of thermal stability and serious delaminating flaws in various aqueous and organic solutions. Kapton, adopted worldwide due to its superior thermal durability, allows the high-temperature sintering of nanoparticle-based metal inks. By carefully selecting inks (Ag and Au) and Kapton substrates (Kapton HN films with a thickness of 135 µm and a thermal resistance of up to 400 °C) with optimal printing parameters and simplified post-treatments (sintering), outstanding film integrity, thermal stability, and antidelaminating features were obtained in both aqueous and organic solutions without any pretreatment strategy (surface modification). These films were applied in four novel devices: a solid-state ion-selective (IS) nitrate (NO3-) sensor, a single-stranded DNA (ssDNA)-based mercury (Hg2+) aptasensor, a low-cost protein printed circuit board (PCB) sensor, and a long-lasting organic thin-film transistor (OTFT). The IS NO3- sensor displayed a linear sensitivity range between 10-4.5 and 10-1 M (r2 = 0.9912), with a limit of detection of 2 ppm for NO3-. The Hg2+ sensor exhibited a linear correlation (r2 = 0.8806) between the change in the transfer resistance (RCT) and the increasing concentration of Hg2+. The protein PCB sensor provided a label-free method for protein detection. Finally, the OTFT demonstrated stable performance, with mobility values in the linear (µlin) and saturation (µsat) regimes of 0.0083 ± 0.0026 and 0.0237 ± 0.0079 cm2 V-1 S-1, respectively, and a threshold voltage (Vth) of -6.75 ± 3.89 V.


Subject(s)
Imides/chemistry , Mercury/analysis , Nitrates/analysis , Polymers/chemistry , Proteins/analysis , Aptamers, Nucleotide/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Computer Peripherals , DNA/chemistry , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Gold/chemistry , Ink , Limit of Detection , Silver/chemistry , Transistors, Electronic
SELECTION OF CITATIONS
SEARCH DETAIL