Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2400640, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621196

ABSTRACT

Nowadays, high-valent Cu species (i.e., Cuδ +) are clarified to enhance multi-carbon production in electrochemical CO2 reduction reaction (CO2RR). Nonetheless, the inconsistent average Cu valence states are reported to significantly govern the product profile of CO2RR, which may lead to misunderstanding of the enhanced mechanism for multi-carbon production and results in ambiguous roles of high-valent Cu species. Dynamic Cuδ + during CO2RR leads to erratic valence states and challenges of high-valent species determination. Herein, an alternative descriptor of (sub)surface oxygen, the (sub)surface-oxygenated degree (κ), is proposed to quantify the active high-valent Cu species on the (sub)surface, which regulates the multi-carbon production of CO2RR. The κ validates a strong correlation to the carbonyl (*CO) coupling efficiency and is the critical factor for the multi-carbon enhancement, in which an optimized Cu2O@Pd2.31 achieves the multi-carbon partial current density of ≈330 mA cm-2 with a faradaic efficiency of 83.5%. This work shows a promising way to unveil the role of high-valent species and further achieve carbon neutralization.

2.
Nat Commun ; 14(1): 5245, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37640719

ABSTRACT

One challenge for realizing high-efficiency electrocatalysts for CO2 electroreduction is lacking in comprehensive understanding of potential-driven chemical state and dynamic atomic-configuration evolutions. Herein, by using a complementary combination of in situ/operando methods and employing copper single-atom electrocatalyst as a model system, we provide evidence on how the complex interplay among dynamic atomic-configuration, chemical state change and surface coulombic charging determines the resulting product profiles. We further demonstrate an informative indicator of atomic surface charge (φe) for evaluating the CO2RR performance, and validate potential-driven dynamic low-coordinated Cu centers for performing significantly high selectivity and activity toward CO product over the well-known four N-coordinated counterparts. It indicates that the structural reconstruction only involved the dynamic breaking of Cu-N bond is partially reversible, whereas Cu-Cu bond formation is clearly irreversible. For all single-atom electrocatalysts (Cu, Fe and Co), the φe value for efficient CO production has been revealed closely correlated with the configuration transformation to generate dynamic low-coordinated configuration. A universal explication can be concluded that the dynamic low-coordinated configuration is the active form to efficiently catalyze CO2-to-CO conversion.

3.
ACS Appl Mater Interfaces ; 13(44): 52134-52143, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34258990

ABSTRACT

To reach a carbon-neutral future, electrochemical CO2 reduction reaction (eCO2RR) has proven to be a strong candidate for the next-generation energy system. Among potential materials, single-atom catalysts (SACs) serve as a model to study the mechanism behind the reduction of CO2 to CO, given their well-defined active metal centers and structural simplicity. Moreover, using metal-organic frameworks (MOFs) as supports to anchor and stabilize central metal atoms, the common concern, metal aggregation, for SACs can be addressed well. Furthermore, with their turnability and designability, MOF-derived SACs can also extend the scope of research on SACs for the eCO2RR. Herein, we synthesize sulfurized MOF-derived Mn SACs to study effects of the S dopant on the eCO2RR. Using complementary characterization techniques, the metal moiety of the sulfurized MOF-derived Mn SACs (MnSA/SNC) is identified as MnN3S1. Compared with its non-sulfur-modified counterpart (MnSA/NC), the MnSA/SNC provides uniformly superior activity to produce CO. Specifically, a nearly 30% enhancement of Faradaic efficiency (F.E.) in CO production is observed, and the highest F.E. of approximately 70% is identified at -0.45 V. Through operando spectroscopic characterization, the probing results reveal that the overall enhancement of CO production on the MnSA/SNC is possibly caused by the S atom in the local MnN3S1 moiety, as the sulfur atom may induce the formation of S-O bonding to stabilize the critical intermediate, *COOH, for CO2-to-CO. Our results provide novel design insights into the field of SACs for the eCO2RR.

4.
Phys Chem Chem Phys ; 21(7): 3960-3969, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30706931

ABSTRACT

The solution properties of a synthesized imidazolium-based amphiphilic polyelectrolyte dissolved in pure- and mixed-solvent media composed of two aprotic polar solvents (N,N-dimethylacetamide (DMAc) and N-methyl-2-pyrrolidone (NMP)) having a similar dielectric constant are explored in the semidilute regime (1-4 wt%). Rheological characterizations reveal that the use of mixed-solvent media (e.g., DMAc/NMP with 1 : 1 in volume fraction, designated as 1 : 1 DMAc/NMP) leads to a substantial reduction in the solution viscosity while altering the fluid attribute from gel-like (G' > G'') to critical-gel-like (G' ∼ G'' ∼ ωn, with n ≅ 0.5). To gain insight into these peculiar rheological features, dynamic light scattering analysis of the representative 1 : 1 DMAc/NMP medium indicates that the fraction and mean hydrodynamic radius of the micrometer-sized cluster alter substantially, too. Multiscale static light/X-ray scattering characterizations further reveal that only the NMP and 1 : 1 DMAc/NMP media (and not the DMAc) are capable of producing hierarchical structures of the cluster interior that are beneficial to mesoscale ion conduction, as supported by ac conductivity measurements. Overall, the present findings suggest that an appropriate selection of mixed-solvent media may offer an exceptional opportunity to promote the rheological, structural, and ion-conduction properties of a polyelectrolyte solution beyond the reach of the corresponding pure-solvent media.

5.
ACS Appl Mater Interfaces ; 6(3): 1589-94, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24447040

ABSTRACT

Highly effective carbon supported-Pt75Au25 catalysts for oxygen reduction reaction (ORR) are prepared though titanium dioxide modification and post heat treatment. After accelerated durability test (ADT) of 1700 cycles, the ORR activity of PtAu/C catalysts modified by TiO2 and air heat treatment is 3 times higher than that of the commercial Pt/C. The enhancement of ORR activity is attributed to surface and structural alteration by air-induced Pt surface segregation and lower unfilled d states. On the contrary, for TiO2 modified and H2 treated PtAu/C catalysts, the deterioration of the ORR activity may be due to the loss of electrochemical surface area after ADT and the increase of d-band vacancy.

6.
Phys Chem Chem Phys ; 13(32): 14457-61, 2011 Aug 28.
Article in English | MEDLINE | ID: mdl-21731963

ABSTRACT

We report a simple, scalable approach to improve the interfacial characteristics and, thereby, the performance of commonly used polyolefin based battery separators. The nanoparticle-coated separators are synthesized by first plasma treating the membrane in oxygen to create surface anchoring groups followed by immersion into a dispersion of positively charged SiO(2) nanoparticles. The process leads to nanoparticles electrostatically adsorbed not only onto the exterior of the surface but also inside the pores of the membrane. The thickness and depth of the coatings can be fine-tuned by controlling the ζ-potential of the nanoparticles. The membranes show improved wetting to common battery electrolytes such as propylene carbonate. Cells based on the nanoparticle-coated membranes are operable even in a simple mixture of EC/PC. In contrast, an identical cell based on the pristine, untreated membrane fails to be charged even after addition of a surfactant to improve electrolyte wetting. When evaluated in a Li-ion cell using an EC/PC/DEC/VC electrolyte mixture, the nanoparticle-coated separator retains 92% of its charge capacity after 100 cycles compared to 80 and 77% for the plasma only treated and pristine membrane, respectively.


Subject(s)
Electric Power Supplies , Lithium/chemistry , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Electrochemistry , Ions/chemistry , Particle Size , Silicon Dioxide/chemical synthesis , Surface Properties
7.
Biosci Biotechnol Biochem ; 69(12): 2358-67, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16377894

ABSTRACT

An isolated yeast strain was grown aerobically on phenol as a sole carbon source up to 24 mM; the rate of degradation of phenol at 30 degrees C was greater than other microorganisms at the comparable phenol concentrations. This microorganism was further identified and is designated Candida albicans TL3. The catabolic activity of C. albicans TL3 for degradation of phenol was evaluated with the K(s) and V(max) values of 1.7 +/- 0.1 mM and 0.66 +/- 0.02 micromol/min/mg of protein, respectively. With application of enzymatic, chromatographic and mass-spectrometric analyses, we confirmed that catechol and cis,cis-muconic acid were produced during the biodegradation of phenol performed by C. albicans TL3, indicating the occurrence of an ortho-fission pathway. The maximum activity of phenol hydroxylase and catechol-1,2-dioxygenase were induced when this strain grew in phenol culture media at 22 mM and 10 mM, respectively. In addition to phenol, C. albicans TL3 was effective in degrading formaldehyde, which is another major pollutant in waste water from a factory producing phenolic resin. The promising result from the bio-treatment of such factory effluent makes Candida albicans TL3 be a potentially useful strain for industrial application.


Subject(s)
Candida albicans/metabolism , Disinfectants/metabolism , Phenol/metabolism , Biodegradation, Environmental , Candida albicans/enzymology , Candida albicans/growth & development , Catechol 1,2-Dioxygenase/metabolism , Formaldehyde/metabolism , Gas Chromatography-Mass Spectrometry , Glucose/metabolism , Industrial Waste/analysis , Kinetics , Mixed Function Oxygenases/metabolism , Spectrometry, Mass, Electrospray Ionization , Temperature , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...