Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Molecules ; 27(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35684353

ABSTRACT

Breast cancer (BC) is the second leading cause of death among women, and it has become a global health issue due to the increasing number of cases. Different treatment options, including radiotherapy, surgery, chemotherapy and anti-estrogen therapy, aromatase inhibitors, anti-angiogenesis drugs, and anthracyclines, are available for BC treatment. However, due to its high occurrence and disease progression, effective therapeutic options for metastatic BC are still lacking. Considering this scenario, there is an urgent need for an effective therapeutic strategy to meet the current challenges of BC. Natural products have been screened as anticancer agents as they are cost-effective, possess low toxicity and fewer side effects, and are considered alternative therapeutic options for BC therapy. Natural products showed anticancer activities against BC through the inhibition of angiogenesis, cell migrations, proliferations, and tumor growth; cell cycle arrest by inducing apoptosis and cell death, the downstream regulation of signaling pathways (such as Notch, NF-κB, PI3K/Akt/mTOR, MAPK/ERK, and NFAT-MDM2), and the regulation of EMT processes. Natural products also acted synergistically to overcome the drug resistance issue, thus improving their efficacy as an emerging therapeutic option for BC therapy. This review focused on the emerging roles of novel natural products and derived bioactive compounds as therapeutic agents against BC. The present review also discussed the mechanism of action through signaling pathways and the synergistic approach of natural compounds to improve their efficacy. We discussed the recent in vivo and in vitro studies for exploring the overexpression of oncogenes in the case of BC and the current status of newly discovered natural products in clinical investigations.


Subject(s)
Antineoplastic Agents , Biological Products , Breast Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biological Products/pharmacology , Biological Products/therapeutic use , Breast Neoplasms/metabolism , Female , Humans , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction
2.
Sci Rep ; 12(1): 6955, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484165

ABSTRACT

The role of miRNAs in cancer and their possible function as therapeutic agents are interesting and needed further investigation. The miR-26a-5p had been demonstrated as a tumor suppressor in various cancers. However, the importance of miR-26a-5p regulation in upper tract urothelial carcinoma (UTUC) remains unclear. Here, we aimed to explore the miR-26a-5p expression in UTUC tissues and to identify its regulatory targets and signal network involved in UTUC tumorigenesis. The miR-26a-5p expression was validated by quantitative real-time polymerase chain reaction (qPCR) using renal pelvis tissue samples from 22 patients who were diagnosed with UTUC and 64 cases of renal pelvis tissue microarray using in situ hybridization staining. BFTC-909 UTUC cells were used to examine the effects of miR-26a-5p genetic delivery on proliferation, migration and expression of epithelial-to-mesenchymal transition (EMT) markers. MiR-26a-5p was significantly down-regulated in UTUC tumors compared to adjacent normal tissue and was decreased with histological grades. Moreover, restoration of miR-26a-5p showed inhibition effects on proliferation and migration of BFTC-909 cells. In addition, miR-26a-5p delivery regulated the EMT marker expression and inhibited WNT5A/ß-catenin signaling and expression of downstream molecules including NF-κB and MMP-9 in BFTC-909 cells. This study demonstrated that miR-26a-5p restoration may reverse EMT process and regulate WNT5A/ß-catenin signaling in UTUC cells. Further studies warranted to explore the potential roles in biomarkers for diagnostics and prognosis, as well as novel therapeutics targets for UTUC treatment.


Subject(s)
Carcinoma, Transitional Cell , MicroRNAs , Urinary Bladder Neoplasms , Female , Humans , Male , MicroRNAs/genetics , Signal Transduction , Wnt-5a Protein/genetics , beta Catenin
3.
J Pers Med ; 11(12)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34945828

ABSTRACT

BACKGROUND: Melatonin, produced by the pineal gland, is known for its antioxidant, oncostatic, and anti-inflammatory properties. However, studies on serum melatonin levels in different cancer types have yielded conflicting results, and little is known about the clinical significance of serum melatonin in oral squamous cell carcinoma (OSCC) in the Southern Asian population. Therefore, we explored its role in OSCC in this study. METHODS: A total of 67 male OSCC patients and 78 healthy controls were enrolled in this case-control study. The serum levels of melatonin were determined by enzyme-linked immunosorbent assay (ELISA) and compared between the two groups. RESULTS: The serum melatonin levels were significantly lower in OSCC patients compared with healthy controls (mean ± standard deviation, 15.0 ± 4.6 vs. 18.5 ± 11.8 pg/mL, p = 0.02). In the subgroup of age less than 55 years (mean age of OSCC), OSCC patients had a significantly decreased melatonin level than healthy controls (mean melatonin, 15.7 ± 12.6 vs. 20.8 ± 3.9 pg/mL, p = 0.02). Decreased serum melatonin (odds ratio (OR): 0.95, 95%CI: 0.91-0.99), alcohol consumption (OR: 29.02, 95%CI: 11.68-72.16), betel quid chewing (OR:136.44, 95%CI: 39.17-475.27), and cigarette smoking (OR:29.48, 95%CI: 11.06-78.60) all increased the risk of OSCC under univariate analyses of logistic regression. Betel quid chewing (OR: 45.98, 95%CI: 10.34-204.49) and cigarette smoking (OR:6.94, 95%CI: 1.60-30.16) were the independent risk factors for OSCC in Taiwan. In addition, a negative correlation between age and melatonin level was observed in healthy controls (Pearson r = -0.24, p = 0.03). However, the negative correlation was lost in patients with OSCC. Melatonin concentration had no association with the severity of OSCC. CONCLUSION: Overall, our study provides evidence that serum melatonin levels decreased in OSCC patients in Taiwan and the decreased level is much significant in young populations and suggests that the decreased melatonin was associated with OSCC, especially in young populations. Further studies are warranted to investigate whether melatonin can be a useful non-invasive screening tool for OSCC.

4.
Molecules ; 26(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34834023

ABSTRACT

Pancreatic ductal adenocarcinoma is one of the most lethal malignancies: more than half of patients are diagnosed with a metastatic disease, which is associated with a five-year survival rate of only 3%. 5-epi-Sinuleptolide, a norditerpene isolated from Sinularia sp., has been demonstrated to possess cytotoxic activity against cancer cells. However, the cytotoxicity against pancreatic cancer cells and the related mechanisms are unknown. The aim of this study was to evaluate the anti-pancreatic cancer potential of 5-epi-sinuleptolide and to elucidate the underlying mechanisms. The inhibitory effects of 5-epi-sinuleptolide treatment on the proliferation of pancreatic cancer cells were determined and the results showed that 5-epi-sinuleptolide treatment inhibited cell proliferation, induced apoptosis and G2/M cell cycle arrest, and suppressed the invasion of pancreatic cancer cells. The results of western blotting further revealed that 5-epi-sinuleptolide could inhibit JAK2/STAT3, AKT, and ERK phosphorylation, which may account for the diverse cytotoxic effects of 5-epi-sinuleptolide. Taken together, our present investigation unveils a new therapeutic and anti-metastatic potential of 5-epi-sinuleptolide for pancreatic cancer treatment.


Subject(s)
Anthozoa/chemistry , Carcinoma, Pancreatic Ductal , Cytotoxins , Diterpenes , Janus Kinase 2/metabolism , MAP Kinase Signaling System/drug effects , Proto-Oncogene Proteins c-akt/metabolism , STAT3 Transcription Factor/metabolism , Animals , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cytotoxins/chemistry , Cytotoxins/pharmacology , Diterpenes/chemistry , Diterpenes/pharmacology , Pancreatic Neoplasms
5.
Pathogens ; 10(2)2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33671315

ABSTRACT

Chloroquine (CQ) and its derivative, hydroxychloroquine (HCQ), have attracted wide attention for treating coronavirus disease 2019 (COVID-19). However, conflicting outcomes have been found in COVID-19 clinical trials after treatment with CQ or HCQ. To date, it remains uncertain whether CQ and HCQ are beneficial antiviral drugs for combating COVID-19. We performed a systematic review to depict the efficacy of CQ or HCQ for the treatment of COVID-19. The guidelines of PRISMA were used to conduct this systematic review. We searched through articles from PubMed, Web of Science and other sources that were published from 1 January 2020 to 31 October 2020. The search terms included combinations of human COVID-19, CQ, and HCQ. Eleven qualitative articles comprising of four clinical trials and seven observation studies were utilized in our systematic review. The analysis shows that CQ and HCQ do not have efficacy in treatment of patients with severe COVID-19. In addition, CQ and HCQ have caused life-threatening adverse reactions which included cardiac arrest, electrocardiogram modification, and QTc prolongation, particularly during the treatment of patients with severe COVID-19. Our systematic review suggested that CQ and HCQ are not beneficial antiviral drugs for curing patients with severe COVID-19. The treatment effect of CQ and HCQ is not only null but also causes serious side effects, which may cause potential cardiotoxicity in severe COVID-19 patients.

6.
Adv Nutr ; 12(2): 363-373, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33002104

ABSTRACT

This systematic review and meta-analysis aimed to explore the association between the Mediterranean dietary pattern and inflammation in older adults. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. A search of the literature was conducted up to June 2020 in 7 electronic databases, namely PubMed, Embase, Web of Science, Scopus, Cochrane Library, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and ProQuest. The Joanna Briggs Institute Critical Appraisal Checklists and the Newcastle-Ottawa Scale were used to assess the methodological quality. The overall standardized mean difference (SMD) and 95% CIs were estimated in random-effects meta-analyses. Thirteen studies were identified as having acceptable quality and were included in this systematic review: 3 randomized controlled trials (RCTs), 1 quasi-experimental study, 1 cohort study, and 8 cross-sectional studies. The circulating C-reactive protein (CRP) concentration was the most common inflammation indicator used. Results of the meta-analysis on 5 cross-sectional studies revealed a significant inverse association between the Mediterranean dietary pattern and inflammation as assessed by CRP (SMD = -0.26; 95% CI: -0.41, -0.11; P < 0.001). Other studies that investigated a variety of inflammation indicators other than CRP showed mixed results with regard to the relation between the Mediterranean dietary pattern and inflammation in older adults. Our findings suggest that the Mediterranean dietary pattern may be associated with lower inflammation in older adults. However, more long-term RCTs are required to demonstrate the effects of the Mediterranean dietary pattern on multiple inflammation parameters in older adults. The study has been registered on PROSPERO (#CRD42020140145).


Subject(s)
Diet , Inflammation , Aged , Humans , C-Reactive Protein , Cross-Sectional Studies , Randomized Controlled Trials as Topic
7.
Int J Mol Sci ; 21(9)2020 Apr 25.
Article in English | MEDLINE | ID: mdl-32344823

ABSTRACT

Iron overload is related to leukemia transformation in myelodysplastic syndrome (MDS) patients. Siderophores help to transport iron. Type 2-hydroxybutyrate dehydrogenase (BDH2) is a rate-limiting factor in the biogenesis of siderophores. Using qRT-PCR, we analyze BDH2mRNA expression in the bone marrow (BM) of 187 MDS patients, 119 de novo acute myeloid leukemia (AML) patients, and 43 lymphoma patients with normal BM. Elevated BDH2mRNA expression in BM is observed in MDS patients (n = 187 vs. 43, normal BM; P = 0.009), and this is related to ferritin levels. Patients with higher BDH2 expression show a greater risk of leukemia progression (15.25% vs. 3.77%, lower expression; P = 0.017) and shorter leukemia-free-survival (medium LFS, 9 years vs. 7 years; P = 0.024), as do patients with a ferritin level ≥350 ng/mL. Additionally, we investigate the mechanisms related to the prognostic ability of BDH2 by using BDH2-KD THP1. The cell cycle analysis, surface markers, and special stain studies indicate that BDH2-KD induces differentiation and decreases the growth rate of THP1 cells, which is associated with the retardation of the cell cycle. Moreover, many genes, including genes related to mitochondrial catabolism, oncogenes, tumor suppressor genes, and genes related to cell differentiation and proliferation influence BDH2-KD THP1 cells. Herein, we demonstrate that BDH2 is involved in cell cycle arrest and the inhibition of differentiation in malignant cells. Furthermore, the high BDH2 expression in MDS patients could be suggestive of a poor prognostic factor. This study provides a foundation for further research on the roles of BDH2 and iron metabolism in the pathogenesis of MDS.


Subject(s)
Bone Marrow/pathology , Gene Expression Regulation/genetics , Hydroxybutyrate Dehydrogenase/physiology , Leukemia, Myeloid, Acute/enzymology , Myelodysplastic Syndromes/enzymology , Preleukemia/enzymology , Adult , Aged , Aged, 80 and over , Apoptosis/genetics , Bone Marrow/metabolism , Cell Cycle Checkpoints/genetics , Cell Differentiation/genetics , Female , Ferritins/blood , Gene Expression Regulation, Leukemic , Humans , Hydroxybutyrate Dehydrogenase/biosynthesis , Hydroxybutyrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Lipocalin-2/biosynthesis , Lipocalin-2/genetics , Male , Middle Aged , Myelodysplastic Syndromes/blood , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/blood , Neoplasm Proteins/genetics , Neoplasm Proteins/physiology , Preleukemia/genetics , Preleukemia/pathology , Prognosis , Progression-Free Survival , RNA Interference , RNA, Messenger/biosynthesis , RNA, Neoplasm/biosynthesis , RNA, Small Interfering/genetics , THP-1 Cells , Young Adult
8.
Cancers (Basel) ; 12(2)2020 Feb 10.
Article in English | MEDLINE | ID: mdl-32050622

ABSTRACT

Hepatocellular carcinoma (HCC) is among the ten most commonly diagnosed cancers and the fourth leading cause of cancer-related death. Patients with hepatitis B virus (HBV) infection are prone to developing chronic liver diseases (i.e., fibrosis and cirrhosis), and the HBV X antigen plays an important role in the development of HCC. The difficulty in detecting HCC at the early stages is one of the main reasons that the death rate approximates the incidence rate. The regulators controlling the downstream liver protein expression from HBV infection are unclear. Mass spectrometric techniques and customized programs were used to identify differentially expressed proteins which may be involved in the development of liver fibrosis and HCC progression in hepatitis B virus X protein transgenic mice (HBx mice). FSTL1, CTSB, and TGF-ß enhanced the signaling pathway proteins during the pathogenesis of HBx. Missing proteins can be essential in cell growth, differentiation, apoptosis, migration, metastasis or angiogenesis. We found that LHX2, BMP-5 and GDF11 had complex interactions with other missing proteins and BMP-5 had both tumor suppressing and tumorigenic roles. BMP-5 may be involved in fibrosis and tumorigenic processes in the liver. These results provide us an understanding of the mechanism of HBx-induced disorders, and may serve as molecular targets for liver treatment.

9.
Sci Rep ; 8(1): 5458, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29615682

ABSTRACT

The S100A2 protein is an important regulator of keratinocyte differentiation, but its role in wound healing remains unknown. We establish epithelial-specific S100A2 transgenic (TG) mice and study its role in wound repair using punch biopsy wounding assays. In line with the observed increase in proliferation and migration of S100A2-depleted human keratinocytes, mice expressing human S100A2 exhibit delayed cutaneous wound repair. This was accompanied by the reduction of re-epithelialization as well as a slow, attenuated response of Mcp1, Il6, Il1ß, Cox2, and Tnf mRNA expression in the early phase. We also observed delayed Vegfa mRNA induction, a delayed enhancement of the Tgfß1-mediated alpha smooth muscle actin (α-Sma) axis and a differential expression of collagen type 1 and 3. The stress-activated p53 tumor suppressor protein plays an important role in cutaneous wound healing and is an S100A2 inducer. Notably, S100A2 complexes with p53, potentiates p53-mediated transcription and increases p53 expression both transcriptionally and posttranscriptionally. Consistent with a role of p53 in repressing NF-κB-mediated transcriptional activation, S100A2 enhanced p53-mediated promoter suppression of Cox2, an early inducible NF-κB target gene upon wound injury. Our study thus supports a model in which the p53-S100A2 positive feedback loop regulates wound repair process.


Subject(s)
Chemotactic Factors/metabolism , Feedback, Physiological , Re-Epithelialization , S100 Proteins/metabolism , Skin/cytology , Tumor Suppressor Protein p53/metabolism , Wound Healing , Actins/metabolism , Animals , Cell Movement , Cell Proliferation , Chemotactic Factors/genetics , Collagen/metabolism , Cyclooxygenase 2/genetics , Epithelial Cells/cytology , Epithelial Cells/metabolism , Gene Expression Regulation , Humans , Keratinocytes/cytology , Male , Mice , Mice, Transgenic , NF-kappa B/metabolism , Promoter Regions, Genetic/genetics , S100 Proteins/genetics , Skin/metabolism , Transcription, Genetic , Transforming Growth Factor beta1/metabolism
10.
Oncotarget ; 9(1): 442-452, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-29416626

ABSTRACT

Glycine N-methyltransferase is a tumor suppressor gene for hepatocellular carcinoma, which can activate DNA methylation by inducing the S-adenosylmethionine to S-adenosylhomocystine. Previous studies have indicated that the expression of Glycine N-methyltransferase is inhibited in hepatocellular carcinoma. To confirm and identify missing proteins, the pathologic analysis of the tumor-bearing mice will provide critical histologic information. Such a mouse model is applied as a screening tool for hepatocellular carcinoma as well as a strategy for missing protein discovery. In this study we designed an analysis platform using the human proteome atlas to compare the possible missing proteins to human whole chromosomes. This will integrate the information from animal studies to establish an optimal technique in the missing protein biomarker discovery.

11.
Sleep Med ; 38: 122-129, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29031746

ABSTRACT

OBJECTIVE: We investigated the longitudinal impacts of insomnia on the subsequent developments of anxiety and depression during a four-year follow-up. We further categorized individuals with insomnia into different insomnia subgroups to examine whether the risk of anxiety and depression varies by subtype. METHODS: Participants were identified from National Health Insurance enrollees in Taiwan during 2002-2009. The study included 19,273 subjects with insomnia and 38,546 matched subjects without insomnia. All subjects did not have previous diagnosis of insomnia, sleep apnea, anxiety, or depression. RESULTS: Compared with non-insomniacs, insomniacs had a higher risk of developing anxiety only [adjusted hazard ratio (HR) = 8.83, 95% CI = 7.59-10.27], depression only (adjusted HR = 8.48, 95% CI = 6.92-10.39), and both anxiety and depression (adjusted HR = 17.98, 95% CI = 12.65-25.56). When breaking down the insomnia subgroups, individuals with a relapse of insomnia (adjusted HR = 10.42-26.80) had the highest risk of anxiety only, depression only, and both anxiety and depression, followed by persistent insomnia (adjusted HR = 9.82-18.98), then remitted insomnia (adjusted HR = 4.50-8.27). All three insomnia subgroups had a greater four-year cumulative incidence rate than the non-insomnia group for anxiety only, depression only, and both anxiety and depression (p < 0.0001). CONCLUSION: Our findings reinforce the clinical predictor role of insomnia in the future onset of anxiety or/and depression. Awareness of insomnia and treatment of insomnia should be recommended at clinics, and patterns of insomnia should be monitored to help treatment and control of subsequent psychiatric disorders. Future research with comprehensive data collection is needed to identify factors that contribute to different insomnia subtypes.


Subject(s)
Anxiety/epidemiology , Depression/epidemiology , Sleep Initiation and Maintenance Disorders/epidemiology , Sleep Initiation and Maintenance Disorders/psychology , Adolescent , Adult , Aged , Female , Follow-Up Studies , Humans , Incidence , Longitudinal Studies , Male , Middle Aged , Proportional Hazards Models , Retrospective Studies , Risk Factors , Sleep Apnea Syndromes/epidemiology , Sleep Apnea Syndromes/psychology , Socioeconomic Factors , Taiwan , Young Adult
12.
PLoS One ; 12(8): e0183368, 2017.
Article in English | MEDLINE | ID: mdl-28829799

ABSTRACT

OBJECTIVE: Pancreatic cancer is one of the most lethal types of cancer with a 5-year survival rate of ~5%. Histone deacetylases (HDACs) participate in many cellular processes, including carcinogenesis, and pharmacological inhibition of HDACs has emerged as a potential therapeutic strategy. In this study, we explored antitumor activity of the novel HDAC inhibitor AR-42 in pancreatic cancer. METHODS: Human pancreatic cancer cell lines BxPC-3 and PANC-1 were used in this study. Real-time PCR, RT-PCR, and western blotting were employed to investigate expression of specific genes and proteins, respectively. Translocation of apoptosis-inducing factor was investigated by immunofluorescence and subcellular fractionation. The number of apoptotic cells, cell cycle stages, and reactive oxygen species (ROS) generation levels were determined by flow cytometry. Cell invasiveness was examined by the Matrigel invasion assay. Efficacy of AR-42 in vivo was evaluated by utilizing BxPC-3 xenograft mouse model. RESULTS: AR-42 inhibited pancreatic cancer cell proliferation by causing G2/M cell cycle arrest via regulating expression levels of genes and proteins involved in cell cycle. AR-42 also induced ROS generation and DNA damage, triggering apoptosis of pancreatic cancer cells via both caspase-3-dependent and caspase-3-independent pathways. In addition, AR-42 increased expression levels of negative regulators of p53 (miR-125b, miR-30d, and miR33), which could contribute to lower expression level of mutant p53 in pancreatic cancer cells. Cell invasion assay showed that AR-42 reduced cancer cell aggressiveness and significantly diminished BxPC-3 xenograft tumor growth in vivo. CONCLUSION: AR-42, a novel HDAC inhibitor, inhibited pancreatic cancer cells by regulating p53 expression, inducing cell cycle arrest, particularly at the G2/M stage, and activating multiple apoptosis pathways. Additionally, AR-42 inhibited cell invasiveness and potently suppressed pancreatic cancer tumors in vivo. We conclude that by virtue of its multiple mechanisms of action, AR-42 possesses a considerable potential as an antitumor agent in pancreatic cancer.


Subject(s)
Histone Deacetylase Inhibitors/pharmacology , Pancreatic Neoplasms/pathology , Phenylbutyrates/pharmacology , Animals , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Mice , Mice, Inbred BALB C , Xenograft Model Antitumor Assays
14.
Oncotarget ; 8(17): 29233-29246, 2017 Apr 25.
Article in English | MEDLINE | ID: mdl-28418923

ABSTRACT

Pancreatic cancer is an aggressive malignancy that is the fourth leading cause of death worldwide. Since there is a dire need for novel and effective therapies to improve the poor survival rates of advanced pancreatic cancer patients, we analyzed the antitumor effects of OSU-A9, an indole-3-carbinol derivative, on pancreatic cancer cell lines in vitro and in vivo. OSU-A9 exhibited a stronger antitumor effect than gemcitabine on two pancreatic cancer cell lines, including gemcitabine-resistant PANC-1 cells. OSU-A9 treatment induced apoptosis, the down-regulation of Akt phosphorylation, up-regulation of p38 phosphorylation and decreased phosphorylation of JAK and STAT3. Cell migration and invasiveness assays showed that OSU-A9 reduced cancer cell aggressiveness and inhibited BxPC-3 xenograft growth in nude mice. These results suggest that OSU-A9 modulates the p38-JAK-STAT3 signaling module, thereby inducing cytotoxicity in pancreatic cancer cells. Continued evaluation of OSU-A9 as a potential therapeutic agent for pancreatic cancer thus appears warrented.


Subject(s)
Indoles/therapeutic use , MAP Kinase Signaling System/genetics , Methanol/analogs & derivatives , Pancreatic Neoplasms/drug therapy , STAT3 Transcription Factor/metabolism , Animals , Cell Line, Tumor , Humans , Indoles/pharmacology , Male , Methanol/pharmacology , Methanol/therapeutic use , Mice , Mice, Nude , Pancreatic Neoplasms/pathology , Signal Transduction , Transfection
15.
Article in English | MEDLINE | ID: mdl-28246540

ABSTRACT

Researchers have reported significant effects from Danshen (Salvia miltiorrhiza) in terms of inhibiting tumor cell proliferation and promoting apoptosis in breast cancer, hepatocellular carcinomas, promyelocytic leukemia, and clear cell ovary carcinomas. Here we report our data indicating that Danshen extracts, especially alcohol extract, significantly inhibited the proliferation of the human oral squamous carcinoma (OSCC) cell lines HSC-3 and OC-2. We also observed that Danshen alcohol extract activated the caspase-3 apoptosis executor by impeding members of the inhibitor of apoptosis (IAP) family, but not by regulating the Bcl-2-triggered mitochondrial pathway in OSCC cells. Our data also indicate that the extract exerted promising effects in vivo, with HSC-3 tumor xenograft growth being suppressed by 40% and 69% following treatment with Danshen alcohol extract at 50 and 100 mg/kg, respectively, for 34 days. Combined, our results indicate appreciable anticancer activity and significant potential for Danshen alcohol extract as a natural antioxidant and herbal human oral cancer chemopreventive drug.

16.
Gastroenterology ; 152(6): 1507-1520.e15, 2017 05.
Article in English | MEDLINE | ID: mdl-28188746

ABSTRACT

BACKGROUND & AIMS: The ability of exocrine pancreatic cells to change the cellular phenotype is required for tissue regeneration upon injury, but also contributes to their malignant transformation and tumor progression. We investigated context-dependent signaling and transcription mechanisms that determine pancreatic cell fate decisions toward regeneration and malignancy. In particular, we studied the function and regulation of the inflammatory transcription factor nuclear factor of activated T cells 1 (NFATC1) in pancreatic cell plasticity and tissue adaptation. METHODS: We analyzed cell plasticity during pancreatic regeneration and transformation in mice with pancreas-specific expression of a constitutively active form of NFATC1, or depletion of enhancer of zeste 2 homologue 2 (EZH2), in the context of wild-type or constitutively activate Kras, respectively. Acute and chronic pancreatitis were induced by intraperitoneal injection of caerulein. EZH2-dependent regulation of NFATC1 expression was studied in mouse in human pancreatic tissue and cells by immunohistochemistry, immunoblotting, and quantitative reverse transcription polymerase chain reaction. We used genetic and pharmacologic approaches of EZH2 and NFATC1 inhibition to study the consequences of pathway disruption on pancreatic morphology and function. Epigenetic modifications on the NFATC1 gene were investigated by chromatin immunoprecipitation assays. RESULTS: NFATC1 was rapidly and transiently induced in early adaptation to acinar cell injury in human samples and in mice, where it promoted acinar cell transdifferentiation and blocked proliferation of metaplastic pancreatic cells. However, in late stages of regeneration, Nfatc1 was epigenetically silenced by EZH2-dependent histone methylation, to enable acinar cell redifferentiation and prevent organ atrophy and exocrine insufficiency. In contrast, oncogenic activation of KRAS signaling in pancreatic ductal adenocarcinoma cells reversed the EZH2-dependent effects on the NFATC1 gene and was required for EZH2-mediated transcriptional activation of NFATC1. CONCLUSIONS: In studies of human and mouse pancreatic cells and tissue, we identified context-specific epigenetic regulation of NFATc1 activity as an important mechanism of pancreatic cell plasticity. Inhibitors of EZH2 might therefore interfere with oncogenic activity of NFATC1 and be used in treatment of pancreatic ductal adenocarcinoma.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Cell Plasticity/genetics , Cell Transformation, Neoplastic/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Gene Expression Regulation , NFATC Transcription Factors/genetics , Pancreatic Neoplasms/genetics , Regeneration/genetics , Acinar Cells/physiology , Animals , Carcinoma, Pancreatic Ductal/chemistry , Cell Proliferation/genetics , Cell Transdifferentiation/genetics , Ceruletide , Cyclin-Dependent Kinase Inhibitor p16/genetics , Enhancer of Zeste Homolog 2 Protein/analysis , Enhancer of Zeste Homolog 2 Protein/metabolism , Gene Silencing , Histones/metabolism , Humans , Methylation , Mice , NFATC Transcription Factors/analysis , NFATC Transcription Factors/metabolism , Pancreas/physiology , Pancreatic Neoplasms/chemistry , Pancreatitis, Chronic/chemically induced , Pancreatitis, Chronic/physiopathology , Promoter Regions, Genetic , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction/genetics , Transcription, Genetic
17.
Biomed Res Int ; 2017: 4051763, 2017.
Article in English | MEDLINE | ID: mdl-28127555

ABSTRACT

Micelles, with the structure of amphiphilic molecules including a hydrophilic head and a hydrophobic tail, are recently developed as nanocarriers for the delivery of drugs with poor solubility. In addition, micelles have shown many advantages, such as enhanced permeation and retention (EPR) effects, prolonged circulation times, and increased endocytosis through surface modification. In this study, we measured the critical micelle concentrations, diameters, stability, and cytotoxicity and the cell uptake of micelles against hepatic cells with two kinds of hydrophilic materials: PEG-PCL and HA-g-PCL. We used 131I as a radioactive tracer to evaluate the stability, drug delivery, and cell uptake activity of the micelles. The results showed that HA-g-PCL micelles exhibited higher drug encapsulation efficiency and stability in aqueous solutions. In addition, the 131I-lipiodol loaded HA-g-PCL micelles had better affinity and higher cytotoxicity compared to HepG2 cells.


Subject(s)
Drug Delivery Systems , Ethiodized Oil/administration & dosage , Iodine Radioisotopes/administration & dosage , Radiopharmaceuticals/administration & dosage , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Contrast Media/administration & dosage , Contrast Media/pharmacokinetics , Contrast Media/toxicity , Drug Carriers/chemistry , Drug Stability , Ethiodized Oil/pharmacokinetics , Ethiodized Oil/toxicity , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/radiation effects , Humans , Hyaluronic Acid/analogs & derivatives , Hydrophobic and Hydrophilic Interactions , Iodine Radioisotopes/pharmacokinetics , Iodine Radioisotopes/toxicity , Micelles , Particle Size , Polyesters , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/toxicity , Solubility
18.
Dev Comp Immunol ; 67: 8-17, 2017 02.
Article in English | MEDLINE | ID: mdl-27984103

ABSTRACT

In 2009, a swine-origin influenza A virus - A(H1N1)pdm09 - emerged and has became a pandemic strain circulating worldwide. The hemagglutinin (HA) of influenza virus is a potential target for the development of anti-viral therapeutic agents. Here, we generated mAbs by immunization of baculovirus-insect expressing trimeric recombinant HA of the A(H1N1)pdm09 strain. Results indicated that the mAbs recognized two novel neutralizing and protective epitopes-"STAS" and "FRSK" which located near Cb and Ca1 antigenic regions respectively and were conserved in almost 2009-2016 influenza H1N1 stains. The mAb 12E11 demonstrated higher protective efficacy than mAb 8B10 in mice challenge assay. Both mAb pretreatments significantly reduced virus titers and pro-inflammatory cytokines in mice lung postinfection (p < 0.01), and showed prophylactic and therapeutic efficacies even 48 h postinfection (p < 0.05). Combination therapy using the mAbs with oseltamivir pre- and post-treatment showed synergistic therapeutic effect in mice model (p < 0.01). Further investigation for clinical application in humans is warranted.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/therapeutic use , Immunotherapy/methods , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/immunology , Orthomyxoviridae Infections/therapy , Viral Vaccines/immunology , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Viral/isolation & purification , Combined Modality Therapy , Dogs , Drug Synergism , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunodominant Epitopes/immunology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/immunology , Oseltamivir/therapeutic use , Protein Multimerization , Swine
19.
Article in English | MEDLINE | ID: mdl-27242913

ABSTRACT

Pancreatic cancer is the eighth leading cause of cancer death worldwide. Patients with pancreatic cancer are normally diagnosed at an advanced stage and present poor survival rate. Ovatodiolide (OV), a bioactive macrocyclic diterpenoid isolated from Anisomeles indica, showed cytotoxicity effects in pancreatic cancer cells by inhibiting cell proliferation and inducing apoptosis. Moreover, not only were cell adhesion and invasion markedly suppressed in a dose-dependent manner, but the mRNA expression of matrix metalloproteinase-9 (MMP-9) and focal adhesion kinase (FAK) was also significantly decreased. Western blot analysis indicated that OV potently suppressed the phosphorylation of STAT-3 and its upstream kinase including ERK1/2, P38, and AKT Ser473. Meanwhile, OV inactivated the nuclear factor kappa B (NF-κB) by inhibiting IκB kinase (IKK α/ß) activation and the subsequent suppression of inhibitor of kappa B (IκB) phosphorylation. These results demonstrated that OV could potentially inhibit Mia-PaCa2 cancer cells proliferation and induce apoptosis through modulation of NF-κB and STAT3 pathway. Moreover, OV suppressed cell invasiveness and interfered with cell-matrix adhesion in Mia-PaCa2 cancer cells by reducing MMP-9 and FAK transcription through suppressing NF-κB and STAT3 pathway. Taken together, our findings reveal a new therapeutic and antimetastatic potential of ovatodiolide for pancreatic cancer remedy.

20.
Int J Mol Sci ; 16(1): 1657-76, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25588218

ABSTRACT

Silk fibroin (SF) is a protein with bulky hydrophobic domains and can be easily purified as sericin-free silk-based biomaterial. Silk fibroin modified chitosan nanoparticle (SF-CSNP), a biocompatible material, has been widely used as a potential drug delivery system. Our current investigation studied the bio-effects of the SF-CSNP uptake by liver cells. In this experiment, the characterizations of SF-CSNPs were measured by particle size analysis and protein assay. The average size of the SF-CSNP was 311.9 ± 10.7 nm, and the average zeta potential was +13.33 ± 0.3 mV. The SF coating on the SF-CSNP was 6.27 ± 0.17 µg/mL. Moreover, using proteomic approaches, several proteins involved in the ubiquitin proteasome pathway were identified by analysis of differential protein expressions of HepG2 cell uptake the SF-CSNP. Our experimental results have demonstrated that the SF-CSNP may be involved in liver cancer cell survival and proliferation.


Subject(s)
Chitosan/metabolism , Drug Carriers/metabolism , Fibroins/metabolism , Nanoparticles/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Biocompatible Materials/metabolism , Cell Line , Hep G2 Cells , Humans , Proteomics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...