Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 447: 138965, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38513482

ABSTRACT

An analytical approach has been developed to verify the authenticity of premium lentils originating from Eglouvi, Lefkada, Greece. The method relies on the digestion of samples followed by the analysis of their rare earth elements (REEs) content. Lentils originating from Eglouvi exhibit higher content in most REEs compared to lentils from other regions as well as distinct Sc/Y and Sc/Yb concentration ratios. Principal component analysis effectively segregates "Eglouvi" lentils into a distinct cluster. Soft Independent Modelling of Class Analogy (SIMCA) successfully models "Eglouvi" lentils. Significant enhancement in model specificity was achieved upon inclusion of Sc/Y and Sc/Yb concentration ratios as additional variables. The model is capable of detecting adulteration in blends of Eglouvi lentils, with a minimum rejection threshold of 4.6% w/w for Greek lentil adulterants and 6.0% w/w for imported lentil adulterants.


Subject(s)
Lens Plant , Greece , Chemometrics
2.
J Chromatogr A ; 1696: 463951, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37054635

ABSTRACT

The potential of Micellar Liquid Chromatography (MLC) to model ecotoxicological endpoints for a series of pesticides was investigated. To exploit the flexibility in MLC conditions, different surfactants were employed and retention mechanism was tracked and compared to Immobilized Artificial Membrane (IAM) chromatographic retention and n-octanol- water partitioning, logP. Neutral polyoxyethylene (23) lauryl ether (Brij-35), anionic sodium dodecyl sulfate (SDS) and cationic cetyltrimethylammonium bromide (CTAB) were used in presence of PBS at pH=7.40 and acetonitrile as organic modifier when necessary. Similarities/ dissimilarities between MLC retention and IAM or logP were investigated by Principal Component Analysis (PCA) and Liner Solvation Energy Relationships (LSER). LSER revealed that hydrogen bonding acidity is the most important factor for differentiation between MLC and IAM or logP. The impact of hydrogen bonding is exemplified in the relationships of MLC retention factors with IAM or logP, which necessitate the inclusion of a relevant descriptor. PCA further revealed that MLC retention factors are clustered together with IAM indices and logP within a broader ellipse formed by ecotoxicological endpoints, involving LC50/ EC50 values of six aquatic organisms namely Rainbow Trout, Fathead Minnow, Bluegill Sunfish, Sheepshead Minnow, Eastern Oyster and Water Flea as well as LD50 values of Honey Bee, thus justifying their use to construct relevant models. Satisfactory specific models for individual organisms, as well as general fish models, were obtained, in most cases, upon combination of MLC retention factors with Molecular Weight (MW) or/ and hydrogen bond parameters. All models were evaluated and compared to previously reported IAM and logP based models using an external validation data set. Predictions with Brij-35 and SDS based models were comparable, although slightly inferior than those obtained with IAM, while they were in all cases better than those obtained with logP. CTAB led to a satisfactory prediction model for Honey Bee, but it was found less suitable for aquatic organisms.


Subject(s)
Membranes, Artificial , Pesticides , Animals , Bees , 1-Octanol/chemistry , Micelles , Cetrimonium , Chromatography, Liquid/methods , Aquatic Organisms
3.
Article in English | MEDLINE | ID: mdl-28276885

ABSTRACT

The aim of this study was to investigate the impact of biomass combustion with respect to burning conditions and fuel types on particulate matter emissions (PM10) and their metals as well as toxic elements content. For this purpose, different lab scale burning conditions were tested (20 and 13% O2 in the exhaust gas which simulate an incomplete and complete combustion respectively). Furthermore, two pellet stoves (8.5 and 10 kW) and one open fireplace were also tested. In all cases, 8 fuel types of biomass produced in Greece were used. Average PM10 emissions ranged at laboratory-scale combustions from about 65 to 170 mg/m3 with flow oxygen at 13% in the exhaust gas and from 85 to 220 mg/m3 at 20% O2. At pellet stoves the emissions were found lower (35 -85 mg/m3) than the open fireplace (105-195 mg/m3). The maximum permitted particle emission limit is 150 mg/m3. Metals on the PM10 filters were determined by several spectrometric techniques after appropriate digestion or acid leaching of the filters, and the results obtained by these two methods were compared. The concentration of PM10 as well as the total concentration of the metals on the filters after the digestion procedure appeared higher at laboratory-scale combustions with flow oxygen at 20% in the exhaust gas and even higher at fireplace in comparison to laboratory-scale combustions with 13% O2 and pellet stoves. Modern combustion appliances and appropriate types of biomass emit lower PM10 emissions and lower concentration of metals than the traditional devices where incomplete combustion conditions are observed. Finally, a comparison with other studies was conducted resulting in similar results.


Subject(s)
Air Pollutants/analysis , Fires , Metals, Heavy/analysis , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Wood/chemistry , Greece , Particle Size , Vehicle Emissions/analysis
4.
Ecotoxicol Environ Saf ; 139: 150-157, 2017 May.
Article in English | MEDLINE | ID: mdl-28130991

ABSTRACT

The potential of immobilized artificial membrane chromatography (IAM) to predict bioconcentration factors (BCF) of pharmaceutical compounds in aquatic organisms was studied. For this purpose, retention factors extrapolated to pure aqueous phase, logkw(IAM), of 27 drugs were measured on an IAM stationary phase, IAM.PC.MG type. The data were combined with retention factors on two IAM columns, IAM.PC.MG and IAM.PC.DD2 types, reported previously by our research group and correlated with logBCF values predicted by Estimation Program Interface (EPI Suite) Software. Linear models were established upon exclusion of ionic or highly hydrophilic nonionic drugs, for which a constant value of logBCF equal to 0.50 was arbitrarily assigned by EPI Suite Software. As additional physicochemical parameter BioWin5 proved to be statistically significant, expressing the decrease of bioaccumulation potential as a result of biodegradation in the aquatic environment. The constructed IAM model was successfully validated by application to a set of pharmaceuticals, whose experimental BCF values are available. Better predictions compared to EPI Suite Software were achieved for the dataset under study. Since bioconcentration process involves electrostatic interactions, IAM retention may be a better measure for BCF values, especially for ionic species, compared to octanol-water partition coefficients widely implemented in environmental sciences. The developed approach can be considered as a novel tool for the prediction of bioconcentration of pharmaceutical compounds in aquatic organisms in order to minimize further experimental assays in the future.


Subject(s)
Aquatic Organisms/metabolism , Chromatography, High Pressure Liquid , Membranes, Artificial , Pharmaceutical Preparations/chemistry , Pharmacokinetics , Biodegradation, Environmental , Chromatography, High Pressure Liquid/methods , Forecasting/methods , Linear Models , Tissue Distribution , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...