Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Front Microbiol ; 12: 728996, 2021.
Article in English | MEDLINE | ID: mdl-35250897

ABSTRACT

The long-lasting co-evolution of ticks with pathogens results in mutual adaptation. Blood-feeding is one of the critical physiological behaviors that have been associated with the tick microbiome; however, most knowledge was gained through the study of laboratory-reared ticks. Here we detached Ixodes persulcatus ticks at different stages of blood-feeding from human patients and performed high-throughput transcriptomic analysis on them to identify their virome and genes differentially expressed between flat and fully fed ticks. We also traced bloodmeal sources of those ticks and identified bats and three other potential mammalian hosts, highlighting the public health significance. We found Jingmen tick virus and 13 putative new viruses belonging to 11 viral families, three of which even exhibited high genetic divergence from viruses previously reported in the same tick species from the same geographic region. Furthermore, differential expression analysis suggested a downregulation of antioxidant genes in the fully fed I. persulcatus ticks, which might be related to bloodmeal-related redox homeostasis. Our work highlights the significance of active surveillance of tick viromes and suggests a role of reactive oxygen species (ROS) in modulating changes in the microbiome during blood-feeding.

2.
J Genet ; 992020.
Article in English | MEDLINE | ID: mdl-32893838

ABSTRACT

The yellowtail rasbora (Rasbora tornieri) is a miniature ray-finned fish categorized under the genus Rasbora in the family of Cyprinidae. In this study, a complete mitogenome sequence of R. tornieri was sequenced using four primers targeting two halves of the mitogenome with overlapping flanking regions. The size of mitogenome was 16,573 bp, housing 22 transfer RNA genes, 13 protein-coding genes, two ribosomal RNA genes and a putative control region. Identical gene organization was detected between this species and other members of Rasbora genus. The heavy strand encompassed 28 genes while the light strand accommodated the other nine genes. Most protein-coding genes execute ATG as start codon, excluding COI and ND3 genes, which utilized GTG instead. The central conserved sequence blocks (CSB-E, CSB-F and CSB-D), variable sequence blocks (CSB-1, CSB-3 and CSB-2) as well as the terminal associated sequence (TAS) were conserved within the control region. The maximum likelihood phylogenetic family tree revealed the divergence of R. tornieri from the basal region of the Rasbora clade, where its evolutionary relationships with other Rasbora members are poorly resolved as indicated by the low bootstrap values. This work acts as window for further population genetics and molecular evolution studies of Rasbora genus in future.


Subject(s)
Biological Evolution , Cypriniformes/genetics , Fish Proteins/genetics , Genome, Mitochondrial/genetics , Mitochondria/genetics , Sequence Analysis, DNA/methods , Animals , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL