Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Expert Rev Mol Diagn ; 22(1): 119-124, 2022 01.
Article in English | MEDLINE | ID: mdl-34878349

ABSTRACT

BACKGROUND: The import of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage B.1.36.27 has sparked the fourth wave of COVID-19 outbreak in Hong Kong. This strain has been circulating in Hong Kong since September 2020 but rarely found in other countries (<1%). RESEARCH DESIGN AND METHODS: A total of 14 SARS-CoV-2 genome sequences collected from patients in Hong Kong between July 2020 and March 2021 were determined by whole viral genome sequencing using Illumina next-generation sequencing platform, followed by phylogenetic analysis. RESULTS: Of the 14 SARS-CoV-2 genome sequences analyzed, 9 strains belonged to the PANGO lineage B.1.36.27, GISAID clade GH, and Nextclade clade 20A. Compared to the reference genome, 31 nucleotide differences and 11 amino acid differences were identified in the genome of the SARS-CoV-2 from PANGO lineage B.1.36.27. CONCLUSIONS: We reported the nucleotides and amino acids mutations identified in the SARS-CoV-2 from PANGO lineage B.1.36.27. Our viral genome sequences enriched the understanding of SARS-CoV-2 mutational landscape and improved the repertoire of known SARS-CoV-2 variants for tracking and tracing. From this study, we found no evidence to show that SARS-CoV-2 from lineage B.1.36.27 can compromise existing vaccines and antibody therapies.


Subject(s)
Genome, Viral , Phylogeny , SARS-CoV-2 , COVID-19/virology , Hong Kong/epidemiology , Humans , SARS-CoV-2/genetics
3.
Emerg Microbes Infect ; 1(11): e35, 2012 Nov.
Article in English | MEDLINE | ID: mdl-26038405

ABSTRACT

The recent outbreak of severe respiratory infections associated with a novel group C betacoronavirus (HCoV-EMC) from Saudi Arabia has drawn global attention to another highly probable "SARS-like" animal-to-human interspecies jumping event in coronavirus (CoV). The genome of HCoV-EMC is most closely related to Tylonycteris bat coronavirus HKU4 (Ty-BatCoV HKU4) and Pipistrellus bat coronavirus HKU5 (Pi-BatCoV HKU5) we discovered in 2006. Phylogenetically, HCoV-EMC is clustered with Ty-BatCoV HKU4/Pi-BatCoV HKU5 with high bootstrap supports, indicating that HCoV-EMC is a group C betaCoV. The major difference between HCoV-EMC and Ty-BatCoV HKU4/Pi-BatCoV HKU5 is in the region between S and E, where HCoV-EMC possesses five ORFs (NS3a-NS3e) instead of four, with low (31%-62%) amino acid identities to Ty-BatCoV HKU4/Pi-BatCoV HKU5. Comparison of the seven conserved replicase domains for species demarcation shows that HCoV-EMC is a novel CoV species. More intensive surveillance studies in bats and other animals may reveal the natural host of HCoV-EMC.

4.
Emerg Microbes Infect ; 1(9): e25, 2012 Sep.
Article in English | MEDLINE | ID: mdl-26038430

ABSTRACT

We report the first case of severe pneumonia due to co-infection with the emerging avian influenza A (H5N1) virus subclade 2.3.2.1 and Mycoplasma pneumoniae. The patient was a returning traveller who had visited a poultry market in South China. We then review the epidemiology, virology, interspecies barrier limiting poultry-to-human transmission, clinical manifestation, laboratory diagnosis, treatment and control measures of H5N1 clades that can be transmitted to humans. The recent controversy regarding the experiments involving aerosol transmission of recombinant H5N1 virus between ferrets is discussed. We also review the relative contribution of the poor response to antiviral treatment and the virus-induced hyperinflammatory damage to the pathogenesis and the high mortality of this infection. The factors related to the host, virus or medical intervention leading to the difference in disease mortality of different countries remain unknown. Because most developing countries have difficulty in instituting effective biosecurity measures, poultry vaccination becomes an important control measure. The rapid evolution of the virus would adversely affect the efficacy of poultry vaccination unless a correctly matched vaccine was chosen, manufactured and administered in a timely manner. Vigilant surveillance must continue to allow better preparedness for another poultry or human pandemic due to new viral mutants.

5.
Cell Biosci ; 1(1): 22, 2011 Jun 14.
Article in English | MEDLINE | ID: mdl-21711489

ABSTRACT

BACKGROUND: Laribacter hongkongensis is associated with community-acquired gastroenteritis and traveler's diarrhea and it can reside in human, fish, frogs and water. In this study, we performed an in-depth annotation of the genes in its genome related to adaptation to the various environmental niches. RESULTS: L. hongkongensis possessed genes for DNA repair and recombination, basal transcription, alternative σ-factors and 109 putative transcription factors, allowing DNA repair and global changes in gene expression in response to different environmental stresses. For acid stress, it possessed a urease gene cassette and two arc gene clusters. For alkaline stress, it possessed six CDSs for transporters of the monovalent cation/proton antiporter-2 and NhaC Na+:H+ antiporter families. For heavy metals acquisition and tolerance, it possessed CDSs for iron and nickel transport and efflux pumps for other metals. For temperature stress, it possessed genes related to chaperones and chaperonins, heat shock proteins and cold shock proteins. For osmotic stress, 25 CDSs were observed, mostly related to regulators for potassium ion, proline and glutamate transport. For oxidative and UV light stress, genes for oxidant-resistant dehydratase, superoxide scavenging, hydrogen peroxide scavenging, exclusion and export of redox-cycling antibiotics, redox balancing, DNA repair, reduction of disulfide bonds, limitation of iron availability and reduction of iron-sulfur clusters are present. For starvation, it possessed phosphorus and, despite being asaccharolytic, carbon starvation-related CDSs. CONCLUSIONS: The L. hongkongensis genome possessed a high variety of genes for adaptation to acid, alkaline, temperature, osmotic, oxidative, UV light and starvation stresses and acquisition of and tolerance to heavy metals.

6.
Cell Biosci ; 1(1): 17, 2011 Apr 19.
Article in English | MEDLINE | ID: mdl-21711902

ABSTRACT

BACKGROUND: Laribacter hongkongensis is associated with community-acquired gastroenteritis and traveler's diarrhea. In this study, we performed an in-depth annotation of the genes in its genome related to the various steps in the infective process, drug resistance and mobile genetic elements. RESULTS: For acid and bile resistance, L. hongkongensis possessed a urease gene cassette, two arc gene clusters and bile salt efflux systems. For intestinal colonization, it possessed a putative adhesin of the autotransporter family homologous to those of diffusely adherent Escherichia coli (E. coli) and enterotoxigenic E. coli. To evade from host defense, it possessed superoxide dismutase and catalases. For lipopolysaccharide biosynthesis, it possessed the same set of genes that encode enzymes for synthesizing lipid A, two Kdo units and heptose units as E. coli, but different genes for its symmetrical acylation pattern, and nine genes for polysaccharide side chains biosynthesis. It contained a number of CDSs that encode putative cell surface acting (RTX toxin and hemolysins) and intracellular cytotoxins (patatin-like proteins) and enzymes for invasion (outer membrane phospholipase A). It contained a broad variety of antibiotic resistance-related genes, including genes related to ß-lactam (n = 10) and multidrug efflux (n = 54). It also contained eight prophages, 17 other phage-related CDSs and 26 CDSs for transposases. CONCLUSIONS: The L. hongkongensis genome possessed genes for acid and bile resistance, intestinal mucosa colonization, evasion of host defense and cytotoxicity and invasion. A broad variety of antibiotic resistance or multidrug resistance genes, a high number of prophages, other phage-related CDSs and CDSs for transposases, were also identified.

SELECTION OF CITATIONS
SEARCH DETAIL