Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2309668, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38537163

ABSTRACT

Tin-based perovskite solar cells (PSCs) are promising environmentally friendly alternatives to their lead-based counterparts, yet they currently suffer from much lower device performance. Due to variations in the chemical properties of lead (II) and tin (II) ions, similar treatments may yield distinct effects resulting from differences in underlying mechanisms. In this work, a surface treatment on tin-based perovskite is conducted with a commonly employed ligand, iso-butylammonium iodide (iso-BAI). Unlike the passivation effects previously observed in lead-based perovskites, such treatment leads to the recrystallization of the surface, driven by the higher solubility of tin-based perovskite in common solvents. By carefully designing the solvent composition, the perovskite surface is effectively modified while preserving the integrity of the bulk. The treatment led to enhanced surface crystallinity, reduced surface strain and defects, and improved charge transport. Consequently, the best-performing power conversion efficiency of FASnI3 PSCs increases from 11.8% to 14.2%. This work not only distinguishes the mechanism of surface treatments in tin-based perovskites from that of lead-based counterparts, but also underscores the critical role in designing tailor-made strategies for fabricating efficient tin-based PSCs.

2.
Nat Commun ; 15(1): 2393, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493131

ABSTRACT

Organic photovoltaic cells using Y6 non-fullerene acceptors have recently achieved high efficiency, and it was suggested to be attributed to the charge-transfer (CT) nature of the excitations in Y6 aggregates. Here, by combining electroabsorption spectroscopy measurements and electronic-structure calculations, we find that the charge-transfer character already exists in isolated Y6 molecules but is strongly increased when there is molecular aggregation. Surprisingly, it is found that the large enhanced charge transfer in clustered Y6 molecules is not due to an increase in excited-state dipole moment, Δµ, as observed in other organic systems, but due to a reduced polarizability change, Δp. It is proposed that such a strong charge-transfer character is promoted by the stabilization of the charge-transfer energy upon aggregation, as deduced from density functional theory and four-state model calculations. This work provides insight into the correlation between molecular electronic properties and charge-transfer characteristics in organic electronic materials.

3.
J Am Chem Soc ; 146(11): 7555-7564, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38456423

ABSTRACT

Constructing low-dimensional/three-dimensional (LD/3D) perovskite solar cells can improve efficiency and stability. However, the design and selection of LD perovskite capping materials are incredibly scarce for inverted perovskite solar cells (PSCs) because LD perovskite capping layers often favor hole extraction and impede electron extraction. Here, we develop a facile and effective strategy to modify the perovskite surface by passivating the surface defects and modulating surface electrical properties by incorporating morpholine hydriodide (MORI) and thiomorpholine hydriodide (SMORI) on the perovskite surface. Compared with the PI treatment that we previously developed, the one-dimensional (1D) perovskite capping layer derived from PI is transformed into a two-dimensional (2D) perovskite capping layer (with MORI or SMORI), achieving dimension regulation. It is shown that the 2D SMORI perovskite capping layer induces more robust surface passivation and stronger n-N homotype 2D/3D heterojunctions, achieving a p-i-n inverted solar cell with an efficiency of 24.55%, which retains 87.6% of its initial efficiency after 1500 h of operation at the maximum power point (MPP). Furthermore, 5 × 5 cm2 perovskite mini-modules are presented, achieving an active-area efficiency of 22.28%. In addition, the quantum well structure in the 2D perovskite capping layer increases the moisture resistance, suppresses ion migration, and improves PSCs' structural and environmental stability.

4.
Angew Chem Int Ed Engl ; 63(14): e202319282, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38272832

ABSTRACT

The power conversion efficiencies (PCEs) of perovskite solar cells have recently developed rapidly compared to crystalline silicon solar cells. To have an effective way to control the crystallization of perovskite thin films is the key for achieving good device performance. However, a paradox in perovskite crystallization is from the mismatch between nucleation and Oswald ripening. Usually, the large numbers of nucleation sites tend to weak Oswald ripening. Here, we proposed a new mechanism to promote the formation of nucleation sites by reducing surface energy from 44.9 mN/m to 36.1 mN/m, to spontaneously accelerate the later Oswald ripening process by improving the grain solubility through the elastic modulus regulation. The ripening rate is increased from 2.37 Åm ⋅ s-1 to 4.61 Åm ⋅ s-1 during annealing. Finally, the solar cells derived from the optimized films showed significantly improved PCE from 23.14 % to 25.32 %. The long-term stability tests show excellent thermal stability (the optimized device without encapsulation maintaining 82 % of its initial PCE after 800 h aging at 85 °C) and an improved light stability under illumination. This work provides a new method, the elastic modulus regulation, to enhance the ripening process.

5.
Small Methods ; 8(1): e2300899, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37749953

ABSTRACT

Controlling the crystallization to achieve high-quality homogeneous perovskite film is the key strategy in developing perovskite electronic devices. Here, an in situ dynamic optical probing technique is demonstrated that can monitor the fast crystallization of perovskites and effectively minimize the influence of laser excitation during the measurement. This study finds that the typical static probing technique would damage and induce phase segregation in the perovskite films during the excitation. These issues can be effectively resolved with the dynamic probing approach. It also found that the crystallization between MAPbI3 and MAPbI2 Br is strikingly different. In particular, MAPbI2 Br suffers from inefficient nucleation during the spin-coating that strongly affects the uniform crystal growth in the annealing process. The commonly used pre-heating process is found at a lower temperature not only can further promote the nucleation but also to complete the crystallization of MAPbI2 Br. The role of further annealing at a higher temperature is to facilitate ion-dissociation on the crystal surface to form a passivation layer to stabilize the MAPbI2 Br lattices. The device performance is strongly correlated with the film formation mechanism derived from the in situ results. This work demonstrates that the in situ technique can provide deep insight into the crystallization mechanism, and help to understand the growth mechanism of perovskites with different compositions and dimensionalities.

6.
Adv Mater ; : e2306568, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37677058

ABSTRACT

Wide-bandgap (WBG) perovskites have attracted considerable attention due to their adjustable bandgap properties, making them ideal candidates for top subcells in tandem solar cells (TSCs). However, WBG perovskites often face challenges such as inhomogeneous crystallization and severe nonradiative recombination loss, leading to high open-circuit voltage (VOC ) deficits and poor stability. To address these issues, a multifunctional phenylethylammonium acetate (PEAAc) additive that enhances uniform halide phase distribution and reduces defect density in perovskite films by regulating the mixed-halide crystallization rate, is introduced. This approach successfully develops efficient WBG perovskite solar cells (PSCs) with reduced VOC loss and enhanced stability. By applying this universal strategy to the FAMACsPb(I1- x Brx )3 system with a range of bandgaps of 1.73, 1.79, 1.85, and 1.92 eV, power conversion efficiencies (PCE) of 21.3%, 19.5%, 18.1%, and 16.2%, respectively, are attained. These results represent some of the highest PCEs reported for the corresponding bandgaps. Furthermore, integrating WBG perovskite with organic photovoltaics, an impressive PCE of over 24% for two-terminal perovskite/organic TSCs, with a record VOC of ≈ 2.2 V is achieved. This work establishes a foundation for addressing phase separation and inhomogeneous crystallization in Br-rich perovskite components, paving the way for the development of high-performance WBG PSCs and TSCs.

7.
Adv Mater ; : e2307635, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37714163

ABSTRACT

Multiple cation-composited perovskites are demonstrated as a promising approach to improving the performance and stability of perovskite solar cells (PSCs). However, recipes developed for fabricating high-performance perovskites in laboratories are always not transferable in large-scale production, as perovskite crystallization is highly sensitive to processing conditions. Here, using an in situ optical method, the ambient temperature effect on the crystallization process in multiple cation-composited perovskites is investigated. It is found that the typical solvent-coordinated intermediate phase in methylammonium lead iodide (MAPbI3 ) is absent in formamidinium lead iodide (FAPbI3 ), and nucleation is almost completed in FAPbI3 right after spin-coating. Interestingly, it is found that there is noticeable nuclei aggregation in Formamidinium (FA)-based perovskites even during the spin-coating process, which is usually only observed during the annealing in MAPbI3 . Such aggregation is further promoted at a higher ambient temperature or in higher FA content. Instead of the general belief of stress release-induced crack formation, it is proposed that the origin of the cracks in FA-based perovskites is due to the aggregation-induced solute depletion effect. This work reveals the limiting factors for achieving high-quality FA-based perovskite films and helps to unlock the existing narrow processing window for future large-scale production.

8.
Adv Mater ; : e2306089, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37549890

ABSTRACT

Harnessing the quadratic electro-optic (QEO) of near-infrared polymethine chromophores over broad telecom wavelength bands is a subject of immense potential but remains largely under-investigated. Herein a series of push-pull heptamethines containing the tricyanofuran (TCF) acceptors and indoline or benzo[e]indoline donors are reported. These dipolar chromophores can attain a highly delocalized "cyanine-like" electronic ground state in solvents spanning a wide range of polarities, in some cases even closer to the ideal polymethine state than symmetrical cyanines. A transmission-mode electromodulation spectroscopy is used to study the electric-field-induced changes in optical absorption and refraction of polymer films doped with heptamethine chromophores, and large and thermally stable QEO effect with high efficiency-loss figure-of-merits that compare favorably to those from dipolar polyenes in poled or unpoled polymers and III-V semiconductors is obtained. The study opens a path for developing organic materials based on cyanine-like merocyanines for complementary metal oxide semiconductor -compatible, fast, efficient, and low-loss electro-optic modulation.

9.
Adv Mater ; 35(46): e2304415, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37487572

ABSTRACT

Self-assembled monolayers (SAMs) are widely employed as effective hole-selective layers (HSLs) in inverted perovskite solar cells (PSCs). However, most SAM molecules are amphiphilic in nature and tend to form micelles in the commonly used alcoholic processing solvents. This introduces an extra energetic barrier to disassemble the micelles during the binding of SAM molecules on the substrate surface, limiting the formation of a compact SAM. To alleviate this problem for achieving optimal SAM growth, a co-solvent strategy to disassemble the micelles of carbazole-based SAM molecules in the processing solution is developed. This effectively increases the critical micelle concentration to be above the processing concentration and enhances the reactivity of the phosphonic acid anchoring group to allow densely packed SAMs to be formed on indium tin oxide. Consequently, the PSCs derived from using MeO-2PACz, 2PACz, and CbzNaph SAM HSLs show universally improved performance, with the CbzNaph SAM-derived device achieving a champion efficiency of 24.98% and improved stability.

10.
Small ; 19(47): e2303885, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37496030

ABSTRACT

The black-to-yellow phase transition in perovskite quantum dots (QDs) is more complex than in bulk perovskites, regarding the role of surface energy. Here, with the assistance of in situ grazing-incidence wide-angle and small-angle X-ray scattering (GIWAXS/GISAXS), distinct phase behaviors of cesium lead iodide (CsPbI3 ) QD films under two different temperature profiles-instant heating-up (IHU) and slow heating-up (SHU) is investigated. The IHU process can cause the phase transition from black phase to yellow phase, while under the SHU process, the majority remains in black phase. Detailed studies and structural refinement analysis reveal that the phase transition is triggered by the removal of surface ligands, which switches the energy landscape. The lattice symmetry determines the transition rate and the coexistence black-to-yellow phase ratio. The SHU process allows longer relaxation time for a more ordered QD packing, which helps sustain the lattice symmetry and stabilizes the black phase. Therefore, one can use the lattice symmetry as a general index to monitor the CsPbI3 QD phase transition and finetune the coexistence black-to-yellow phase ratio for niche applications.

11.
J Am Chem Soc ; 145(10): 5920-5929, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36877962

ABSTRACT

Functional additives that can interact with the perovskite precursors to form the intermediate phase have been proven essential in obtaining uniform and stable α-FAPbI3 films. Among them, Cl-based volatile additives are the most prevalent in the literature. However, their exact role is still unclear, especially in inverted perovskite solar cells (PSCs). In this work, we have systematically studied the functions of Cl-based volatile additives and MA-based additives in formamidinium lead iodide (FAPbI3)-based inverted PSCs. Using in situ photoluminescence, we provide clear evidence to unravel the different roles of volatile additives (NH4Cl, FACl, and MACl) and MA-based additives (MACl, MABr, and MAI) in the nucleation, crystallization, and phase transition of FAPbI3. Three different kinds of crystallization routes are proposed based on the above additives. The non-MA volatile additives (NH4Cl and FACl) were found to promote crystallization and lower the phase-transition temperatures. The MA-based additives could quickly induce MA-rich nuclei to form pure α-phase FAPbI3 and dramatically reduce phase-transition temperatures. Furthermore, volatile MACl provides a unique effect on promoting the growth of secondary crystallization during annealing. The optimized solar cells with MACl can achieve an efficiency of 23.1%, which is the highest in inverted FAPbI3-based PSCs.

12.
ACS Appl Mater Interfaces ; 15(5): 7044-7052, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36705641

ABSTRACT

Perovskites show efficient electroluminescence and are expected to have wide applications in light-emitting diodes (LEDs). However, owing to the unbalanced electron-hole transport properties of some highly luminescent perovskites, a fundamental challenge is that the exciton recombination zone of perovskite LEDs (PeLEDs) typically overlaps with an accumulation of the major carrier. It is known to reduce the performances of PeLEDs, leading to a reduction of efficiency and operation stability due to Auger recombination. To address this issue in a hole-dominated blue PeLED, we propose to insert a cesium acetate (CsAc) layer between the hole transport layer (HTL) and the hole-dominant perovskite layer. Electronic properties indicate that the hole accumulation zone of the device with the CsAc layer shifts away from the perovskite/ETL interface, i.e., the recombination zone, to the HTL/CsAc interface. Separation of the hole accumulation region and the exciton recombination zones substantially suppresses exciton quenching. Moreover, the CsAc layer can also improve the photophysical properties of the perovskite film by providing an extra Cs source to interact with the defect site of unreacted PbBr2 in the perovskite film and enhance the crystallinity of the perovskite with an enlarged crystal grain size. As a result, the external quantum efficiency (EQE) of the sky-blue PeLEDs shows considerable improvement from 5.3 to 9.2% upon inserting the CsAc layer.

13.
Mater Horiz ; 10(3): 918-927, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36546551

ABSTRACT

Photodetectors (PDs) based on organic materials exhibit potential advantages such as low-temperature processing, and superior mechanical properties and form factors. They have seen rapid strides toward achieving performance metrics comparable to inorganic counterparts. Here, a simplified device architecture is employed to realize stable and high-performance organic PDs (OPDs) while further easing the device fabrication process. In contrast to the sequential deposition of the hole blocking layer (HBL) and active layer (conventional 'two-step' processing), the proposed strategy forms a self-assembled HBL and active layer in a 'single-step' process. A high-performance UV-Vis-NIR OPD based on the PM6:BTP-eC9 system is demonstrated using this cost-effective processing strategy. The green solvent processed proof-of-concept device exhibits remarkable responsivity of ∼0.5 A W-1, lower noise current than conventional two-step OPD, ultrafast rise/fall times of 1.4/1.6 µs (comparable to commercial silicon diode), and a broad linear dynamic range of 140 dB. Importantly, highly stable (light and heat) devices compared to those processed by the conventional method are realized. The broad application potential of this elegant strategy is proven by demonstrating the concept in three representative systems with broadband sensing competence.

14.
ACS Appl Mater Interfaces ; 14(26): 30174-30181, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35733349

ABSTRACT

The transfer of heat energy in organic semiconductors (OSCs) plays an important role in advancing the applications of organic electronics, especially for lifetime issues. However, compared with crystalline inorganic semiconductors, the thermal transport of OSCs is less efficient and a relevant understanding is very limited. In this contribution, we show that the heat conduction of OSCs can be enhanced by blending with a "commodity" insulator (both thermal and electrical). PC71BM, a well-known electron transporter but poor thermal conductor, was selected as the host OSC material. The blending of a small amount of polystyrene (PS), a commonly used insulating polymer, can facilitate the heat transfer of PC71BM films, as substantiated by the scanning photothermal deflection technique and an infrared thermal camera. The phase thermodynamics of PC71BM/PS blends indicates that the efficient heat transfer preferably occurs in the OSC/insulator blends with better intimate mixing, where isolated PC71BM domains can be effectively bridged by PS that thread through the regions. The applicability of this approach can be observed in blends with another host material─ITIC. This work provides a facile strategy for designing thermally durable organic electronic devices.

15.
ACS Appl Mater Interfaces ; 14(17): 19774-19784, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35443777

ABSTRACT

While humidity treatment has been employed for enhancing the performance of perovskite solar cells and light-emitting diodes (LEDs), only very limited success has been achieved in quasi-two-dimensional (2D) perovskite LEDs (PeLEDs). Here, for the first time, we demonstrate more than one order of magnitude enhancement of the external quantum efficiency (EQE) and electroluminescence (EL) intensity in blue CsPb(Cl/Br)3 PeLEDs with an organic cation of 2,2-(ethylenedioxy)bis(ethylammonium) (EDBE). Upon humidity treatment, the crystallinity of the three-dimensional (3D) perovskite phase in the EDBE-based perovskite is improved, contributing to an enhancement of photoluminescence quantum yield (PLQY). This work suggests that elaborately modulating the molecular structure of large cations under humidity treatment can serve as an effective strategy to improve the performance of quasi-2D PeLEDs.

16.
J Phys Chem Lett ; 12(43): 10595-10602, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34695357

ABSTRACT

For organic solar cells (OSCs), the charge generation mechanism and the recombination loss are heavily linked with charge transfer states (CTS). Measuring the energy of CTS (ECT) by the most widely used technique, however, has become challenging for the non-fullerene-based OSCs with a small driving force, resulting in difficulty in the understanding of OSC physics. Herein, we present a study of the PM6:Y6 bulk heterojunction. It is demonstrated that electro-absorption can not only reveal the dipolar nature of Y6 but also resolve the morphology-dependent absorption signal of CTS in the sub-bandgap region. The device with the optimum blending weight ratio shows an ECT of 1.27 eV, which is confirmed by independent measurements. Because of the charge transfer characteristics of Y6, the charge generation at PM6:Y6 interfaces occurs efficiently under a small but non-negligible driving force of 0.14 eV, and the total recombination loss is as low as 0.43 eV.

17.
ACS Appl Mater Interfaces ; 13(37): 44991-45000, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34492178

ABSTRACT

Perovskite light-emitting diodes (LEDs) show great potential for next-generation lighting and display technology. Despite intensive studies on single-color devices, there are few reports on perovskite-based white LEDs (Pe-WLEDs). Here, an efficient Pe-WLED based on a blue perovskite and an orange phosphorescent emitter is reported for the first time. It is found that using a simple perovskite/phosphor bilayer emitting structure, there is inefficient energy transfer from the blue perovskite to the orange phosphor, leading to low efficiency and a significant color shift with driving voltage. We address this issue by introducing a quantum-well-like charge-confinement structure for enhancing carrier trapping and thus exciton formation in the phosphorescent emitter. As a result, a high external quantum efficiency of 10.81% is obtained. More interestingly, by tuning the dopant concentration of the phosphorescent emitter using this simple device structure, we can controllably get Pe-WLEDs with very stable white light for display applications or tunable color from warm white to daylight for lighting applications.

18.
ACS Appl Mater Interfaces ; 13(36): 43795-43805, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34464077

ABSTRACT

Due to their low-temperature deposition, high mobility (>10 cm2/V·s), and electrical conductivity, amorphous ionic oxide semiconductors (AIOSs) have received much attention for their applications in flexible and/or organic electro-optical devices. Here, we report on a study of the flexibility of CdO-In2O3 alloy thin films, deposited on a polyethylene terephthalate (PET) substrate by radio frequency magnetron sputtering at room temperature. Cd1-xInxO1+δ alloys with the composition of x > 0.6 are amorphous, exhibiting a high electron mobility of 40-50 cm2/V·s, a low resistivity of ∼3 × 10-4 Ω·cm, and high transmittance over a wide spectral window of 350 to >1600 nm. The flexibility of both crystalline and amorphous Cd1-xInxO1+δ films on the PET substrate was investigated by measuring their electrical resistivity after both compressive and tensile bending with a range of bending radii and repeated bending cycles. Under both compressive and tensile bending with Rb = 16.5 mm, no significant degradation was observed for both the crystalline and amorphous films up to 300 bending cycles. For a smaller bending radius, the amorphous film shows much less electrical degradation than the crystalline films under compressive bending due to less film delamination at the bending sites. On the other hand, for a small bending radius (<16 mm), both crystalline and amorphous films degrade after repeated tensile bending, most likely due to the development of microcracks in the films. To demonstrate the application of amorphous Cd1-xInxO1+δ alloy in photovoltaics, we fabricated perovskite and bulk-heterojunction organic solar cells (OSCs) on glass and flexible PET utilizing amorphous Cd1-xInxO1+δ layers as transparent electrodes. The organic-inorganic hybrid perovskite solar cells (PSCs) exhibit a power conversion efficiency (PCE) of ∼11 to 12% under both front and back illumination, demonstrating good bifacial performance with bifaciality factor >90%. The OSCs fabricated on an amorphous Cd1-xInxO1+δ-coated flexible PET substrate achieve a promising PCE of 12.06%. Our results strongly suggest the technological potentials of amorphous Cd1-xInxO1+δ as a reliable and effective transparent conducting material for flexible and organic optoelectronic devices.

19.
ACS Appl Mater Interfaces ; 13(30): 35930-35940, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34288658

ABSTRACT

Lead-based halide perovskites (APbX3, where A = organic or inorganic cation, X = Cl, Br, I) are suitable materials for many optoelectronic devices due to their many attractive properties. However, the concern of lead toxicity and the poor ambient and operational stability of the organic cation group greatly limit their practical utilization. Therefore, there has recently been great interest in lead-free, environment-friendly all-inorganic halide perovskites (IHPs). Sb and Sn are common species suggested to replace Pb for Pb-free IHPs. However, the large difference in the melting points of the precursor materials (e.g., CsBr and SbBr3 precursors for Cs3Sb2Br9) makes the chemical vapor deposition (CVD) growth of high-quality Pb-free IHPs a very challenging task. In this work, we developed a two-step CVD method to overcome this challenge and successfully synthesized Pb-free Cs3Sb2Br9 perovskite microplates. Cs3Sb2Br9 microplates ∼25 µm in size with the exciton absorption peak at ∼2.8 eV and a band gap of ∼2.85 eV were obtained. The microplates have a smooth hexagonal morphology and show a large Stokes shift of ∼450 meV and exciton binding energy of ∼200 meV. To demonstrate the applications of these microplates in optoelectronics, simple photoconductive devices were fabricated. These photodetectors exhibit a current on/off ratio of 2.36 × 102, a responsivity of 36.9 mA/W, and a detectivity of 1.0 × 1010 Jones with a fast response of rise and decay time of 61.5 and 24 ms, respectively, upon 450 nm photon irradiation. Finally, the Cs3Sb2Br9 microplates also show good stability in ambient air without encapsulation. These results demonstrate that the 2-step CVD process is an effective approach to synthesize high-quality all-inorganic lead-free Cs3Sb2Br9 perovskite microplates that have the potential for future high-performance optoelectronic device applications.

20.
Adv Mater ; 33(3): e2006170, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33300231

ABSTRACT

Ion dissociation has been identified to determine the intrinsic stability of perovskite solar cells (PVSCs), but the underlying degradation mechanism is still elusive. Herein, by combining highly sensitive sub-bandgap external quantum efficiency (s-EQE) spectroscopy, impedance analysis, and theoretical calculations, the evolution of defect states in PVSCs during the degradation can be monitored. It is found that the degradation of PVSCs can be divided into three steps: 1) dissociation of ions from perovskite lattices, 2) migration of dissociated ions, and 3) consumption of I- by reacting with metal electrode. Importantly, step (3) is found to be crucial as it will accelerate the first two steps and lead to continuous degradation. By replacing the metal with more chemically robust indium tin oxide (ITO), it is found that the dissociated ions under light soaking will only saturate at the perovskite/ITO interface. Importantly, the dissociated ions will subsequently restore to the corresponding vacancies under dark condition to heal the perovskite and photovoltaic performance. Such shuttling of mobile ions without consumption in the ITO-contact PVSCs results in harvesting-rest-recovery cycles in natural day/night operation. It is envisioned that the mechanism of the intrinsic perovskite material degradation reported here will lead to clearer research directions toward highly stable PVSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...