Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters











Publication year range
1.
Nature ; 629(8013): 861-868, 2024 May.
Article in English | MEDLINE | ID: mdl-38750353

ABSTRACT

A central assumption of neuroscience is that long-term memories are represented by the same brain areas that encode sensory stimuli1. Neurons in inferotemporal (IT) cortex represent the sensory percept of visual objects using a distributed axis code2-4. Whether and how the same IT neural population represents the long-term memory of visual objects remains unclear. Here we examined how familiar faces are encoded in the IT anterior medial face patch (AM), perirhinal face patch (PR) and temporal pole face patch (TP). In AM and PR we observed that the encoding axis for familiar faces is rotated relative to that for unfamiliar faces at long latency; in TP this memory-related rotation was much weaker. Contrary to previous claims, the relative response magnitude to familiar versus unfamiliar faces was not a stable indicator of familiarity in any patch5-11. The mechanism underlying the memory-related axis change is likely intrinsic to IT cortex, because inactivation of PR did not affect axis change dynamics in AM. Overall, our results suggest that memories of familiar faces are represented in AM and perirhinal cortex by a distinct long-latency code, explaining how the same cell population can encode both the percept and memory of faces.


Subject(s)
Facial Recognition , Memory, Long-Term , Recognition, Psychology , Temporal Lobe , Animals , Face , Facial Recognition/physiology , Macaca mulatta/physiology , Memory, Long-Term/physiology , Neurons/physiology , Perirhinal Cortex/physiology , Perirhinal Cortex/cytology , Photic Stimulation , Recognition, Psychology/physiology , Temporal Lobe/anatomy & histology , Temporal Lobe/cytology , Temporal Lobe/physiology , Rotation
2.
iScience ; 26(12): 108372, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38047084

ABSTRACT

Recent studies on ultrasonic neuromodulation (UNM) in rodents have shown that focused ultrasound (FUS) can activate peripheral auditory pathways, leading to off-target and brain-wide excitation, which obscures the direct activation of the target area by FUS. To address this issue, we developed a new mouse model, the double transgenic Pou4f3+/DTR × Thy1-GCaMP6s, which allows for inducible deafening using diphtheria toxin and minimizes off-target effects of UNM while allowing effects on neural activity to be visualized with fluorescent calcium imaging. Using this model, we found that the auditory confounds caused by FUS can be significantly reduced or eliminated within a certain pressure range. At higher pressures, FUS can result in focal fluorescence dips at the target, elicit non-auditory sensory confounds, and damage tissue, leading to spreading depolarization. Under the acoustic conditions we tested, we did not observe direct calcium responses in the mouse cortex. Our findings provide a cleaner animal model for UNM and sonogenetics research, establish a parameter range within which off-target effects are confidently avoided, and reveal the non-auditory side effects of higher-pressure stimulation.

3.
bioRxiv ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38106108

ABSTRACT

A fundamental paradigm in neuroscience is the concept of neural coding through tuning functions 1 . According to this idea, neurons encode stimuli through fixed mappings of stimulus features to firing rates. Here, we report that the tuning of visual neurons can rapidly and coherently change across a population to attend to a whole and its parts. We set out to investigate a longstanding debate concerning whether inferotemporal (IT) cortex uses a specialized code for representing specific types of objects or whether it uses a general code that applies to any object. We found that face cells in macaque IT cortex initially adopted a general code optimized for face detection. But following a rapid, concerted population event lasting < 20 ms, the neural code transformed into a face-specific one with two striking properties: (i) response gradients to principal detection-related dimensions reversed direction, and (ii) new tuning developed to multiple higher feature space dimensions supporting fine face discrimination. These dynamics were face specific and did not occur in response to objects. Overall, these results show that, for faces, face cells shift from detection to discrimination by switching from an object-general code to a face-specific code. More broadly, our results suggest a novel mechanism for neural representation: concerted, stimulus-dependent switching of the neural code used by a cortical area.

4.
Proc Natl Acad Sci U S A ; 120(32): e2221122120, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37523552

ABSTRACT

Segmentation, the computation of object boundaries, is one of the most important steps in intermediate visual processing. Previous studies have reported cells across visual cortex that are modulated by segmentation features, but the functional role of these cells remains unclear. First, it is unclear whether these cells encode segmentation consistently since most studies used only a limited variety of stimulus types. Second, it is unclear whether these cells are organized into specialized modules or instead randomly scattered across the visual cortex: the former would lend credence to a functional role for putative segmentation cells. Here, we used fMRI-guided electrophysiology to systematically characterize the consistency and spatial organization of segmentation-encoding cells across the visual cortex. Using fMRI, we identified a set of patches in V2, V3, V3A, V4, and V4A that were more active for stimuli containing figures compared to ground, regardless of whether figures were defined by texture, motion, luminance, or disparity. We targeted these patches for single-unit recordings and found that cells inside segmentation patches were tuned to both figure-ground and borders more consistently across types of stimuli than cells in the visual cortex outside the patches. Remarkably, we found clusters of cells inside segmentation patches that showed the same border-ownership preference across all stimulus types. Finally, using a population decoding approach, we found that segmentation could be decoded with higher accuracy from segmentation patches than from either color-selective or control regions. Overall, our results suggest that segmentation signals are preferentially encoded in spatially discrete patches.


Subject(s)
Macaca , Visual Cortex , Animals , Pattern Recognition, Visual/physiology , Photic Stimulation/methods , Visual Perception/physiology , Visual Cortex/diagnostic imaging , Visual Cortex/physiology
5.
bioRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-37293117

ABSTRACT

Recent studies on ultrasonic neuromodulation (UNM) in rodents have shown that focused ultrasound (FUS) can activate peripheral auditory pathways, leading to off-target and brain-wide excitation, which obscures the direct activation of the target area by FUS. To address this issue, we developed a new mouse model, the double transgenic Pou4f3+/DTR × Thy1-GCaMP6s, which allows for inducible deafening using diphtheria toxin and minimizes off-target effects of UNM while allowing effects on neural activity to be visualized with fluorescent calcium imaging. Using this model, we found that the auditory confounds caused by FUS can be significantly reduced or eliminated within a certain pressure range. At higher pressures, FUS can result in focal fluorescence dips at the target, elicit non-auditory sensory confounds, and damage tissue, leading to spreading depolarization. Under the acoustic conditions we tested, we did not observe direct calcium responses in the mouse cortex. Our findings provide a cleaner animal model for UNM and sonogenetics research, establish a parameter range within which off-target effects are confidently avoided, and reveal the non-auditory side effects of higher-pressure stimulation.

6.
Elife ; 122023 02 15.
Article in English | MEDLINE | ID: mdl-36790170

ABSTRACT

The rodent visual system has attracted great interest in recent years due to its experimental tractability, but the fundamental mechanisms used by the mouse to represent the visual world remain unclear. In the primate, researchers have argued from both behavioral and neural evidence that a key step in visual representation is 'figure-ground segmentation', the delineation of figures as distinct from backgrounds. To determine if mice also show behavioral and neural signatures of figure-ground segmentation, we trained mice on a figure-ground segmentation task where figures were defined by gratings and naturalistic textures moving counterphase to the background. Unlike primates, mice were severely limited in their ability to segment figure from ground using the opponent motion cue, with segmentation behavior strongly dependent on the specific carrier pattern. Remarkably, when mice were forced to localize naturalistic patterns defined by opponent motion, they adopted a strategy of brute force memorization of texture patterns. In contrast, primates, including humans, macaques, and mouse lemurs, could readily segment figures independent of carrier pattern using the opponent motion cue. Consistent with mouse behavior, neural responses to the same stimuli recorded in mouse visual areas V1, RL, and LM also did not support texture-invariant segmentation of figures using opponent motion. Modeling revealed that the texture dependence of both the mouse's behavior and neural responses could be explained by a feedforward neural network lacking explicit segmentation capabilities. These findings reveal a fundamental limitation in the ability of mice to segment visual objects compared to primates.


Subject(s)
Visual Cortex , Animals , Humans , Visual Cortex/diagnostic imaging , Visual Cortex/physiology , Primates , Macaca , Pattern Recognition, Visual/physiology , Photic Stimulation
7.
Proc Natl Acad Sci U S A ; 119(41): e2204248119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36201537

ABSTRACT

The world is composed of objects, the ground, and the sky. Visual perception of objects requires solving two fundamental challenges: 1) segmenting visual input into discrete units and 2) tracking identities of these units despite appearance changes due to object deformation, changing perspective, and dynamic occlusion. Current computer vision approaches to segmentation and tracking that approach human performance all require learning, raising the question, Can objects be segmented and tracked without learning? Here, we show that the mathematical structure of light rays reflected from environment surfaces yields a natural representation of persistent surfaces, and this surface representation provides a solution to both the segmentation and tracking problems. We describe how to generate this surface representation from continuous visual input and demonstrate that our approach can segment and invariantly track objects in cluttered synthetic video despite severe appearance changes, without requiring learning.


Subject(s)
Learning , Visual Perception , Humans , Light , Models, Theoretical
8.
Curr Biol ; 31(13): 2785-2795.e4, 2021 07 12.
Article in English | MEDLINE | ID: mdl-33951457

ABSTRACT

Understanding how the brain represents the identity of complex objects is a central challenge of visual neuroscience. The principles governing object processing have been extensively studied in the macaque face patch system, a sub-network of inferotemporal (IT) cortex specialized for face processing. A previous study reported that single face patch neurons encode axes of a generative model called the "active appearance" model, which transforms 50D feature vectors separately representing facial shape and facial texture into facial images. However, a systematic investigation comparing this model to other computational models, especially convolutional neural network models that have shown success in explaining neural responses in the ventral visual stream, has been lacking. Here, we recorded responses of cells in the most anterior face patch anterior medial (AM) to a large set of real face images and compared a large number of models for explaining neural responses. We found that the active appearance model better explained responses than any other model except CORnet-Z, a feedforward deep neural network trained on general object classification to classify non-face images, whose performance it tied on some face image sets and exceeded on others. Surprisingly, deep neural networks trained specifically on facial identification did not explain neural responses well. A major reason is that units in the network, unlike neurons, are less modulated by face-related factors unrelated to facial identification, such as illumination.


Subject(s)
Facial Recognition , Neural Networks, Computer , Animals , Brain , Computer Simulation , Primates
9.
Neuroimage ; 235: 118017, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33794355

ABSTRACT

Brain perturbation studies allow detailed causal inferences of behavioral and neural processes. Because the combination of brain perturbation methods and neural measurement techniques is inherently challenging, research in humans has predominantly focused on non-invasive, indirect brain perturbations, or neurological lesion studies. Non-human primates have been indispensable as a neurobiological system that is highly similar to humans while simultaneously being more experimentally tractable, allowing visualization of the functional and structural impact of systematic brain perturbation. This review considers the state of the art in non-human primate brain perturbation with a focus on approaches that can be combined with neuroimaging. We consider both non-reversible (lesions) and reversible or temporary perturbations such as electrical, pharmacological, optical, optogenetic, chemogenetic, pathway-selective, and ultrasound based interference methods. Method-specific considerations from the research and development community are offered to facilitate research in this field and support further innovations. We conclude by identifying novel avenues for further research and innovation and by highlighting the clinical translational potential of the methods.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Neuroimaging/methods , Animals , Humans , Optogenetics , Primates
10.
Elife ; 92020 11 11.
Article in English | MEDLINE | ID: mdl-33174836

ABSTRACT

A powerful paradigm to identify neural correlates of consciousness is binocular rivalry, wherein a constant visual stimulus evokes a varying conscious percept. It has recently been suggested that activity modulations observed during rivalry may represent the act of report rather than the conscious percept itself. Here, we performed single-unit recordings from face patches in macaque inferotemporal (IT) cortex using a no-report paradigm in which the animal's conscious percept was inferred from eye movements. We found that large proportions of IT neurons represented the conscious percept even without active report. Furthermore, on single trials we could decode both the conscious percept and the suppressed stimulus. Together, these findings indicate that (1) IT cortex possesses a true neural correlate of consciousness and (2) this correlate consists of a population code wherein single cells multiplex representation of the conscious percept and veridical physical stimulus, rather than a subset of cells perfectly reflecting consciousness.


Subject(s)
Facial Recognition , Visual Cortex/physiology , Animals , Consciousness , Electrophysiology , Macaca , Male , Pattern Recognition, Visual , Visual Cortex/chemistry , Visual Cortex/diagnostic imaging , Visual Perception
11.
Nat Rev Neurosci ; 21(12): 695-716, 2020 12.
Article in English | MEDLINE | ID: mdl-33144718

ABSTRACT

Objects constitute the fundamental currency of our consciousness: they are the things that we perceive, remember and think about. One of the most important objects for a primate is a face. Research on the macaque face patch system in recent years has given us a remarkable window into the detailed processes underlying object recognition. Here, we review the macaque face patch system, including its anatomical organization, coding principles, role in behaviour and interactions with other brain regions. We highlight not only how it constitutes an archetypal object recognition system but also how it may provide a key to understanding mechanisms for higher cognitive function.


Subject(s)
Brain/physiology , Facial Recognition/physiology , Macaca/physiology , Recognition, Psychology/physiology , Animals , Brain/anatomy & histology , Brain Mapping , Callithrix , Humans , Macaca mulatta , Models, Neurological
13.
Nature ; 583(7814): 103-108, 2020 07.
Article in English | MEDLINE | ID: mdl-32494012

ABSTRACT

The inferotemporal (IT) cortex is responsible for object recognition, but it is unclear how the representation of visual objects is organized in this part of the brain. Areas that are selective for categories such as faces, bodies, and scenes have been found1-5, but large parts of IT cortex lack any known specialization, raising the question of what general principle governs IT organization. Here we used functional MRI, microstimulation, electrophysiology, and deep networks to investigate the organization of macaque IT cortex. We built a low-dimensional object space to describe general objects using a feedforward deep neural network trained on object classification6. Responses of IT cells to a large set of objects revealed that single IT cells project incoming objects onto specific axes of this space. Anatomically, cells were clustered into four networks according to the first two components of their preferred axes, forming a map of object space. This map was repeated across three hierarchical stages of increasing view invariance, and cells that comprised these maps collectively harboured sufficient coding capacity to approximately reconstruct objects. These results provide a unified picture of IT organization in which category-selective regions are part of a coarse map of object space whose dimensions can be extracted from a deep network.


Subject(s)
Models, Neurological , Space Perception/physiology , Temporal Lobe/cytology , Temporal Lobe/physiology , Animals , Electric Stimulation , Macaca mulatta/physiology , Magnetic Resonance Imaging , Male , Neural Pathways/physiology , Temporal Lobe/anatomy & histology
14.
Nat Commun ; 9(1): 1774, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29720645

ABSTRACT

Object recognition in the natural world usually occurs in the presence of multiple surrounding objects, but responses of neurons in inferotemporal (IT) cortex, the large brain area responsible for object recognition, have mostly been studied only to isolated objects. We study rules governing responses to multiple objects by cells in two category-selective regions of macaque IT cortex, the middle lateral face patch (ML) and the middle body patch (MB). We find that responses of single ML and MB cells to pairs of objects can be explained by the widely accepted framework of normalization, with one added ingredient: homogeneous category selectivity of neighboring neurons forming the normalization pool. This rule leads to winner-take-all, contralateral-take-all, or weighted averaging behavior in single cells, depending on the category, spatial configuration, and relative contrast of the two objects. The winner-take-all behavior suggests a potential mechanism for clutter-invariant representation of face and bodies under certain conditions.


Subject(s)
Face , Pattern Recognition, Visual/physiology , Temporal Lobe/physiology , Visual Cortex/physiology , Visual Pathways/physiology , Algorithms , Animals , Brain Mapping , Humans , Image Processing, Computer-Assisted , Macaca mulatta , Male , Models, Neurological , Photic Stimulation/methods
15.
Neuron ; 98(5): 1031-1041.e5, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29804920

ABSTRACT

Ultrasound has received widespread attention as an emerging technology for targeted, non-invasive neuromodulation based on its ability to evoke electrophysiological and motor responses in animals. However, little is known about the spatiotemporal pattern of ultrasound-induced brain activity that could drive these responses. Here, we address this question by combining focused ultrasound with wide-field optical imaging of calcium signals in transgenic mice. Surprisingly, we find cortical activity patterns consistent with indirect activation of auditory pathways rather than direct neuromodulation at the ultrasound focus. Ultrasound-induced activity is similar to that evoked by audible sound. Furthermore, both ultrasound and audible sound elicit motor responses consistent with a startle reflex, with both responses reduced by chemical deafening. These findings reveal an indirect auditory mechanism for ultrasound-induced cortical activity and movement requiring careful consideration in future development of ultrasonic neuromodulation as a tool in neuroscience research.


Subject(s)
Auditory Cortex/radiation effects , Auditory Pathways/radiation effects , Reflex, Startle/radiation effects , Sound , Ultrasonic Waves , Acoustic Stimulation , Animals , Auditory Cortex/diagnostic imaging , Auditory Pathways/diagnostic imaging , Brain/diagnostic imaging , Brain/radiation effects , Calcium Signaling , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/radiation effects , Electrophysiological Phenomena/radiation effects , Mice , Mice, Transgenic , Motor Activity/radiation effects , Optical Imaging
16.
Nat Commun ; 8(1): 2064, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29234028

ABSTRACT

An important question about color vision is how does the brain represent the color of an object? The recent discovery of "color patches" in macaque inferotemporal (IT) cortex, the part of the brain responsible for object recognition, makes this problem experimentally tractable. Here we recorded neurons in three color patches, middle color patch CLC (central lateral color patch), and two anterior color patches ALC (anterior lateral color patch) and AMC (anterior medial color patch), while presenting images of objects systematically varied in hue. We found that all three patches contain high concentrations of hue-selective cells, and that the three patches use distinct computational strategies to represent colored objects: while all three patches multiplex hue and shape information, shape-invariant hue information is much stronger in anterior color patches ALC/AMC than CLC. Furthermore, hue and object shape specifically for primate faces/bodies are over-represented in AMC, but not in the other two patches.


Subject(s)
Color Perception/physiology , Facial Recognition/physiology , Macaca/physiology , Visual Cortex/physiology , Animals , Brain Mapping/methods , Color , Male , Models, Biological , Nerve Net/physiology , Neurons/physiology , Photic Stimulation , Visual Cortex/cytology
17.
Curr Opin Neurobiol ; 46: 208-218, 2017 10.
Article in English | MEDLINE | ID: mdl-28942219

ABSTRACT

We are rapidly approaching a comprehensive understanding of the neural mechanisms behind object recognition. How we use this knowledge of the visual world to plan and act is comparatively mysterious. To fill this gap, we must understand how visual representations are transformed within cognitive regions, and how these cognitive representations of visual information act back upon earlier sensory representations. Here, we summarize our current understanding of visual representation in inferotemporal cortex (IT) and prefrontal cortex (PFC), and the interactions between them. We emphasize the apparent consistency of visual representation in PFC across tasks, and suggest ways to leverage advances in our understanding of high-level vision to better understand cognitive processing.


Subject(s)
Attention/physiology , Cerebral Cortex/physiology , Memory/physiology , Visual Perception/physiology , Animals , Humans , Neural Pathways/physiology , Recognition, Psychology/physiology
18.
Cell ; 169(6): 1013-1028.e14, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28575666

ABSTRACT

Primates recognize complex objects such as faces with remarkable speed and reliability. Here, we reveal the brain's code for facial identity. Experiments in macaques demonstrate an extraordinarily simple transformation between faces and responses of cells in face patches. By formatting faces as points in a high-dimensional linear space, we discovered that each face cell's firing rate is proportional to the projection of an incoming face stimulus onto a single axis in this space, allowing a face cell ensemble to encode the location of any face in the space. Using this code, we could precisely decode faces from neural population responses and predict neural firing rates to faces. Furthermore, this code disavows the long-standing assumption that face cells encode specific facial identities, confirmed by engineering faces with drastically different appearance that elicited identical responses in single face cells. Our work suggests that other objects could be encoded by analogous metric coordinate systems. PAPERCLIP.


Subject(s)
Facial Recognition , Models, Neurological , Temporal Lobe/physiology , Animals , Humans , Macaca , Magnetic Resonance Imaging , Male , Neurons/cytology , Temporal Lobe/cytology
19.
Nat Neurosci ; 20(5): 743-752, 2017 May.
Article in English | MEDLINE | ID: mdl-28288127

ABSTRACT

What is the range of stimuli encoded by face-selective regions of the brain? We asked how electrical microstimulation of face patches in macaque inferotemporal cortex affects perception of faces and objects. We found that microstimulation strongly distorted face percepts and that this effect depended on precise targeting to the center of face patches. While microstimulation had no effect on the percept of many non-face objects, it did affect the percept of some, including non-face objects whose shape is consistent with a face (for example, apples) as well as somewhat facelike abstract images (for example, cartoon houses). Microstimulation even perturbed the percept of certain objects that did not activate the stimulated face patch at all. Overall, these results indicate that representation of facial identity is localized to face patches, but activity in these patches can also affect perception of face-compatible non-face objects, including objects normally represented in other parts of inferotemporal cortex.


Subject(s)
Cerebral Cortex/physiology , Face/physiology , Visual Perception/physiology , Animals , Electric Stimulation , Macaca mulatta , Male , Neurons/physiology , Photic Stimulation , Recognition, Psychology/physiology
20.
J Neurosci ; 36(44): 11338-11349, 2016 11 02.
Article in English | MEDLINE | ID: mdl-27807174

ABSTRACT

Segmentation and recognition of objects in a visual scene are two problems that are hard to solve separately from each other. When segmenting an ambiguous scene, it is helpful to already know the present objects and their shapes. However, for recognizing an object in clutter, one would like to consider its isolated segment alone to avoid confounds from features of other objects. Border-ownership cells (Zhou et al., 2000) appear to play an important role in segmentation, as they signal the side-of-figure of artificial stimuli. The present work explores the role of border-ownership cells in dorsal macaque visual areas V2 and V3 in the segmentation of natural object stimuli and locally ambiguous stimuli. We report two major results. First, compared with previous estimates, we found a smaller percentage of cells that were consistent across artificial stimuli used previously. Second, we found that the average response of those neurons that did respond consistently to the side-of-figure of artificial stimuli also consistently signaled, as a population, the side-of-figure for borders of single faces, occluding faces and, with higher latencies, even stimuli with illusory contours, such as Mooney faces and natural faces completely missing local edge information. In contrast, the local edge or the outlines of the face alone could not always evoke a significant border-ownership signal. Our results underscore that border ownership is coded by a population of cells, and indicate that these cells integrate a variety of cues, including low-level features and global object context, to compute the segmentation of the scene. SIGNIFICANCE STATEMENT: To distinguish different objects in a natural scene, the brain must segment the image into regions corresponding to objects. The so-called "border-ownership" cells appear to be dedicated to this task, as they signal for a given edge on which side the object is that owns it. Here, we report that individual border-ownership cells are unreliable when tested across a battery of artificial stimuli used previously but can signal border-ownership consistently as a population. We show that these border-ownership population signals are also suited for signaling border-ownership for natural objects and at longer latency, even for stimuli without local edge information. Our results suggest that border-ownership cells integrate both local, low-level and global, high-level cues to segment the scene.


Subject(s)
Cues , Form Perception/physiology , Pattern Recognition, Visual/physiology , Perceptual Masking/physiology , Sensory Receptor Cells/physiology , Visual Cortex/physiology , Animals , Macaca mulatta , Male , Photic Stimulation/methods , Task Performance and Analysis
SELECTION OF CITATIONS
SEARCH DETAIL