Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Eur Heart J ; 44(29): 2682-2697, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37387260

ABSTRACT

Abdominal aortic aneurysm (AAA) causes ∼170 000 deaths annually worldwide. Most guidelines recommend asymptomatic small AAAs (30 to <50 mm in women; 30 to <55 mm in men) are monitored by imaging and large asymptomatic, symptomatic, and ruptured AAAs are considered for surgical repair. Advances in AAA repair techniques have occurred, but a remaining priority is therapies to limit AAA growth and rupture. This review outlines research on AAA pathogenesis and therapies to limit AAA growth. Genome-wide association studies have identified novel drug targets, e.g. interleukin-6 blockade. Mendelian randomization analyses suggest that treatments to reduce low-density lipoprotein cholesterol such as proprotein convertase subtilisin/kexin type 9 inhibitors and smoking reduction or cessation are also treatment targets. Thirteen placebo-controlled randomized trials have tested whether a range of antibiotics, blood pressure-lowering drugs, a mast cell stabilizer, an anti-platelet drug, or fenofibrate slow AAA growth. None of these trials have shown convincing evidence of drug efficacy and have been limited by small sample sizes, limited drug adherence, poor participant retention, and over-optimistic AAA growth reduction targets. Data from some large observational cohorts suggest that blood pressure reduction, particularly by angiotensin-converting enzyme inhibitors, could limit aneurysm rupture, but this has not been evaluated in randomized trials. Some observational studies suggest metformin may limit AAA growth, and this is currently being tested in randomized trials. In conclusion, no drug therapy has been shown to convincingly limit AAA growth in randomized controlled trials. Further large prospective studies on other targets are needed.


Subject(s)
Aneurysm, Ruptured , Aortic Aneurysm, Abdominal , Aortic Rupture , Male , Humans , Female , Prospective Studies , Genome-Wide Association Study , Anti-Bacterial Agents/therapeutic use , Aortic Aneurysm, Abdominal/diagnosis , Aortic Aneurysm, Abdominal/therapy
2.
medRxiv ; 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37034679

ABSTRACT

Peripheral artery disease (PAD) is a form of atherosclerotic cardiovascular disease, affecting ∼8 million Americans, and is known to have racial and ethnic disparities. PAD has been reported to have significantly higher prevalence in African Americans (AAs) compared to non-Hispanic European Americans (EAs). Hispanic/Latinos (HLs) have been reported to have lower or similar rates of PAD compared to EAs, despite having a paradoxically high burden of PAD risk factors, however recent work suggests prevalence may differ between sub-groups. Here we examined a large cohort of diverse adults in the Bio Me biobank in New York City (NYC). We observed the prevalence of PAD at 1.7% in EAs vs 8.5% and 9.4% in AAs and HLs, respectively; and among HL sub-groups, at 11.4% and 11.5% in Puerto Rican and Dominican populations, respectively. Follow-up analysis that adjusted for common risk factors demonstrated that Dominicans had the highest increased risk for PAD relative to EAs (OR=3.15 (95% CI 2.33-4.25), P <6.44×10 -14 ). To investigate whether genetic factors may explain this increased risk, we performed admixture mapping by testing the association between local ancestry (LA) and PAD in Dominican Bio Me participants (N=1,940) separately for European (EUR), African (AFR) and Native American (NAT) continental ancestry tracts. We identified a NAT ancestry tract at chromosome 2q35 that was significantly associated with PAD (OR=2.05 (95% CI 1.51-2.78), P <4.06×10 -6 ) with 22.5% vs 12.5% PAD prevalence in heterozygous NAT tract carriers versus non-carriers, respectively. Fine-mapping at this locus implicated tag SNP rs78529201 located within a long intergenic non-coding RNA (lincRNA) LINC00607 , a gene expression regulator of key genes related to thrombosis and extracellular remodeling of endothelial cells, suggesting a putative link of the 2q35 locus to PAD etiology. In summary, we showed how leveraging health systems data helped understand nuances of PAD risk across HL sub-groups and admixture mapping approaches elucidated a novel risk locus in a Dominican population.

3.
Fed Pract ; 40(11 Suppl 5): S23-S28, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38577307

ABSTRACT

Background: The Veterans Health Administration Office of Research and Development (ORD) played a key role in the federal government's response to the COVID-19 pandemic. The ORD effectively leveraged existing resources to answer questions related to the SARS-CoV-2 virus and COVID-19. Observations: When the COVID-19 pandemic hit in 2020, the Million Veteran Program (MVP), one of the largest genomic cohorts in the world, extended the centralized recruitment and enrollment infrastructure to develop a COVID-19 research volunteer registry to assist enrollment in the vaccine and treatment trials in which the US Department of Veterans Affairs (VA) participated. In addition, the MVP allowed for new data collection and a large genomic cohort to understand host contributions to COVID-19. This article describes ways the MVP contributed to the VA's rapid research response to COVID-19. Several host genetic factors believed to play a role in the development and severity of COVID-19 were identified. Furthermore, existing MVP partnerships with other federal agencies, particularly with the Department of Energy, were leveraged to improve understanding and management of COVID-19. Conclusions: A previously established enterprise approach and research infrastructure were essential to the VA's successful and timely COVID-19 research response. This infrastructure not only supported rapid recruitment in vaccine and treatment trials, but also leveraged the unique MVP and VA electronic health record data to drive rapid scientific discovery and inform clinical operations. Extending the models that VA research applied to the federal government at large and establishing centralized resources for shared or federated data analyses across federal agencies will better equip the nation to respond to future public health crises.

5.
Genome Biol ; 17(1): 255, 2016 12 12.
Article in English | MEDLINE | ID: mdl-27955697

ABSTRACT

BACKGROUND: Chronic low-grade inflammation reflects a subclinical immune response implicated in the pathogenesis of complex diseases. Identifying genetic loci where DNA methylation is associated with chronic low-grade inflammation may reveal novel pathways or therapeutic targets for inflammation. RESULTS: We performed a meta-analysis of epigenome-wide association studies (EWAS) of serum C-reactive protein (CRP), which is a sensitive marker of low-grade inflammation, in a large European population (n = 8863) and trans-ethnic replication in African Americans (n = 4111). We found differential methylation at 218 CpG sites to be associated with CRP (P < 1.15 × 10-7) in the discovery panel of European ancestry and replicated (P < 2.29 × 10-4) 58 CpG sites (45 unique loci) among African Americans. To further characterize the molecular and clinical relevance of the findings, we examined the association with gene expression, genetic sequence variants, and clinical outcomes. DNA methylation at nine (16%) CpG sites was associated with whole blood gene expression in cis (P < 8.47 × 10-5), ten (17%) CpG sites were associated with a nearby genetic variant (P < 2.50 × 10-3), and 51 (88%) were also associated with at least one related cardiometabolic entity (P < 9.58 × 10-5). An additive weighted score of replicated CpG sites accounted for up to 6% inter-individual variation (R2) of age-adjusted and sex-adjusted CRP, independent of known CRP-related genetic variants. CONCLUSION: We have completed an EWAS of chronic low-grade inflammation and identified many novel genetic loci underlying inflammation that may serve as targets for the development of novel therapeutic interventions for inflammation.


Subject(s)
C-Reactive Protein/genetics , Epigenesis, Genetic , Inflammation/genetics , Quantitative Trait Loci/genetics , Black or African American , CpG Islands/genetics , DNA Methylation/genetics , Female , Gene Expression , Genetic Variation , Genome-Wide Association Study , Humans , Inflammation/blood , Male , Nucleotide Motifs/genetics , White People
6.
J Vis Exp ; (63): e3663, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22617624

ABSTRACT

Preclinical in vivo research models to investigate pathobiological and pathophysiological processes in the development of intimal hyperplasia after vessel stenting are crucial for translational approaches (1,2). The commonly used animal models include mice, rats, rabbits, and pigs (3-5). However, the translation of these models into clinical settings remains difficult, since those biological processes are already studied in animal vessels but never performed before in human research models (6,7). In this video we demonstrate a new humanized model to overcome this translational gap. The shown procedure is reproducible, easy, and fast to perform and is suitable to study the development of intimal hyperplasia and the applicability of diverse stents. This video shows how to perform the stent technique in human vessels followed by transplantation into immunodeficient rats, and identifies the origin of proliferating cells as human.


Subject(s)
Graft Occlusion, Vascular/etiology , Mammary Arteries/transplantation , Stents , Vascular Grafting/methods , Animals , Cell Growth Processes/physiology , Graft Occlusion, Vascular/pathology , Humans , Mammary Arteries/cytology , Rats , Rats, Nude , Transplantation, Heterologous
7.
Circulation ; 112(11): 1549-56, 2005 Sep 13.
Article in English | MEDLINE | ID: mdl-16144995

ABSTRACT

BACKGROUND: Graft coronary artery disease (GCAD) is the leading cause of death after the first year of heart transplantation. The reduced bioavailability of endothelium-derived nitric oxide (NO) may play a role in endothelial vasodilator dysfunction and the structural changes that are characteristic of GCAD. A potential contributor to endothelial pathobiology is asymmetric dimethylarginine (ADMA), an endogenous NO synthase inhibitor. We hypothesized that lowering ADMA concentrations by dimethylarginine dimethylaminohydrolase (DDAH) overexpression in the recipient might suppress GCAD and long-term immune responses in murine cardiac allografts. METHODS AND RESULTS: In one series, donor hearts of C-H-2(bm12)KhEg (H-2(bm12)) wild-type (WT) mice were heterotopically transplanted into C57BL/6 (H-2b) transgenic mice overexpressing human DDAH-I or WT littermates and procured after 4 hours of reperfusion (WT and DDAH-I recipients, n=6 each). In a second series, donor hearts were transplanted into DDAH-I-transgenic or WT mice and procured 30 days after transplantation (n=7 each). In DDAH-I recipients, plasma ADMA concentrations were lower, in association with reduced myocardial generation of superoxide anion (WT versus DDAH-I, 465.7+/-79.8 versus 173.4+/-32.3 micromol.L(-1).mg(-1).h(-1); P=0.02), inflammatory cytokines, adhesion molecules, and chemokines. GCAD was markedly reduced in cardiac allografts of DDAH-I-transgenic recipients as assessed by luminal narrowing (WT versus DDAH, 79+/-2% versus 33+/-7%; P<0.01), intima-media ratio (WT versus DDAH, 1.1+/-0.1 versus 0.5+/-0.1; P<0.01), and the percentage of diseased vessels (WT versus DDAH, 100+/-0% versus 62+/-10%; P<0.01). CONCLUSIONS: Overexpression of DDAH-I attenuated oxidative stress, inflammatory cytokines, and GCAD in murine cardiac allografts. The effect of DDAH overexpression may be mediated by its reduction of plasma and tissue ADMA concentrations.


Subject(s)
Amidohydrolases/metabolism , Coronary Artery Disease/etiology , Coronary Artery Disease/prevention & control , Heart Transplantation/adverse effects , Amidohydrolases/pharmacology , Animals , Arginine/analogs & derivatives , Arginine/antagonists & inhibitors , Arginine/blood , Arginine/metabolism , Cytokines/antagonists & inhibitors , Enzyme Inhibitors/metabolism , Female , Heart/drug effects , Heart/physiopathology , Heart Transplantation/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myocarditis/prevention & control , Myocardium/metabolism , Nitrates/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Nitrites/metabolism , Osmolar Concentration , Postoperative Period , Pregnancy , Superoxides/antagonists & inhibitors , Time Factors , Transplantation, Heterotopic , Transplantation, Homologous , Tumor Necrosis Factor-alpha/antagonists & inhibitors
8.
Arterioscler Thromb Vasc Biol ; 25(2): 302-8, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15550693

ABSTRACT

OBJECTIVE: Different strains of inbred mice exhibit different susceptibility to the development of atherosclerosis. The C3H/HeJ and C57Bl/6 mice have been used in several studies aimed at understanding the genetic basis of atherosclerosis. Under controlled environmental conditions, variations in susceptibility to atherosclerosis reflect differences in genetic makeup, and these differences must be reflected in gene expression patterns that are temporally related to the development of disease. In this study, we sought to identify the genetic pathways that are differentially activated in the aortas of these mice. METHODS AND RESULTS: We performed genome-wide transcriptional profiling of aortas from C3H/HeJ and C57Bl/6 mice. Differences in gene expression were identified at baseline as well as during normal aging and longitudinal exposure to high-fat diet. The significance of these genes to the development of atherosclerosis was evaluated by observing their temporal pattern of expression in the well-studied apolipoprotein E model of atherosclerosis. CONCLUSIONS: Gene expression differences between the 2 strains suggest that aortas of C57Bl/6 mice have a higher genetic propensity to develop inflammation in response to appropriate atherogenic stimuli. This study expands the repertoire of factors in known disease-related signaling pathways and identifies novel candidate genes for future study. To gain insights into the molecular pathways that are differentially activated in strains of mice with varied susceptibility to atherosclerosis, we performed comprehensive transcriptional profiling of their vascular wall. Genes identified through these studies expand the repertoire of factors in disease-related signaling pathways and identify novel candidate genes in atherosclerosis.


Subject(s)
Aorta/metabolism , Arteriosclerosis/genetics , Gene Expression Profiling , Mice, Inbred C3H/genetics , Mice, Inbred C57BL/genetics , Aging/genetics , Aging/metabolism , Animals , Aorta/pathology , Aortitis/genetics , Aortitis/metabolism , Aortitis/pathology , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Arteriosclerosis/metabolism , Arteriosclerosis/pathology , Diet, Atherogenic , Dietary Fats/pharmacology , Female , Gene Expression Regulation, Developmental , Genetic Predisposition to Disease , Inflammation/genetics , Mice , Mice, Inbred C3H/metabolism , Mice, Inbred C57BL/metabolism , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...