Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 60(7): 870-873, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38164786

ABSTRACT

Herein, we present the first application of target-directed dynamic combinatorial chemistry (tdDCC) to the whole complex of the highly dynamic transmembrane, energy-coupling factor (ECF) transporter ECF-PanT in Streptococcus pneumoniae. In addition, we successfully employed the tdDCC technique as a hit-identification and -optimization strategy that led to the identification of optimized ECF inhibitors with improved activity. We characterized the best compounds regarding cytotoxicity and performed computational modeling studies on the crystal structure of ECF-PanT to rationalize their binding mode. Notably, docking studies showed that the acylhydrazone linker is able to maintain the crucial interactions.


Subject(s)
Bacterial Proteins , Streptococcus pneumoniae , Models, Molecular , Bacterial Proteins/chemistry
3.
Commun Biol ; 6(1): 1182, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37985798

ABSTRACT

The energy-coupling factor (ECF) transporters are a family of transmembrane proteins involved in the uptake of vitamins in a wide range of bacteria. Inhibition of the activity of these proteins could reduce the viability of pathogens that depend on vitamin uptake. The central role of vitamin transport in the metabolism of bacteria and absence from humans make the ECF transporters an attractive target for inhibition with selective chemical probes. Here, we report on the identification of a promising class of inhibitors of the ECF transporters. We used coarse-grained molecular dynamics simulations on Lactobacillus delbrueckii ECF-FolT2 and ECF-PanT to profile the binding mode and mechanism of inhibition of this novel chemotype. The results corroborate the postulated mechanism of transport and pave the way for further drug-discovery efforts.


Subject(s)
ATP-Binding Cassette Transporters , Bacterial Proteins , Humans , Bacterial Proteins/metabolism , ATP-Binding Cassette Transporters/metabolism , Bacteria/metabolism , Vitamins/metabolism , Molecular Dynamics Simulation
4.
Carbohydr Polym ; 292: 119642, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35725155

ABSTRACT

Interaction of binary chitosan/nonionic surfactant (NIS) system with sodium dodecyl sulfate (SDS) in aqueous solution is described using turbodimetry, light scattering, electophoretic mobility and cryogenic electron microscopy. The formation of insoluble CHI/SDS complexes is weakened with a decrease in molecular weight of chitosan and critical micelle concentration of NIS as well as with an increase in NIS concentration. Soluble chitosan/NIS complexes absorb SDS molecules until the charge of mixed chitosan/NIS/SDS complexes reaches a critical value that depends on chitosan molecular weight followed by aggregation of primary electrostatic complexes via hydrogen bonding to complex nanoparticles. In contrast to formation of asymmetric swarm-like structures in the binary chitosan/SDS system, the aggregation of complex nanoparticles in the ternary chitosan/NIS/SDS system occurs by a head-to-tail binding mechanism with formation of elongated filamentous microstructures. The finding can be promising for preparation of microbiologically stable pharmaceutical and cosmetic compositions and drug delivery systems containing mixed surfactants.


Subject(s)
Chitosan , Chitosan/chemistry , Micelles , Sodium Dodecyl Sulfate/chemistry , Surface-Active Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL