Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Appl Crystallogr ; 47(Pt 3): 992-998, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24904245

ABSTRACT

The structural and magnetic properties of a cobalt nanorod array have been studied by means of magnetic field dependent small-angle neutron scattering (SANS). Measurement of the unpolarized SANS cross section dΣ/dΩ of the saturated sample in the two scattering geometries where the applied magnetic field H is either perpendicular or parallel to the wavevector ki of the incoming neutron beam allows one to separate nuclear from magnetic SANS, without employing the usual sector-averaging procedure. The analysis of the SANS data in the saturated state provides structural parameters (rod radius and centre-to-centre distance) that are in good agreement with results from electron microscopy. Between saturation and the coercive field, a strong field dependence of dΣ/dΩ is observed (in both geometries), which cannot be explained using the conventional expression of the magnetic SANS cross section of magnetic nanoparticles in a homogeneous nonmagnetic matrix. The origin of the strong field dependence of dΣ/dΩ is believed to be related to intradomain spin misalignment, due to magnetocrystalline and magnetoelastic anisotropies and magnetostatic stray fields.

2.
J Phys Condens Matter ; 23(32): 325103, 2011 Aug 17.
Article in English | MEDLINE | ID: mdl-21757802

ABSTRACT

Colloidal dispersions of Ni nanorods were synthesized by pulsed electrodeposition of Ni into nanoporous aluminum oxide layers followed by dissolution of the templates. Geometrical characterization of the nanorods by transmission electron microscopy and scanning electron microscopy allowed us to determine the average length (100-250 nm) and diameter (20-40 nm) of the rods and to estimate the thickness of the polyvinylpyrrolidone surfactant layer. Due to their acicular shape, nanorods of the given size are uniaxial ferromagnetic single domain particles and exhibit a distinct anisotropic polarizability. These two characteristic properties are the physical basis for magnetic field-dependent optical transmission and allow us to investigate the rotational diffusion of the nanorods in liquid dispersion. In the present study, we employed AC magnetization measurements, dynamical light scattering and optical transmission measurements in a rotating magnetic field to determine the rotational diffusion coefficient. The results from all three methods were consistent and agree with theory within a factor of 2.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(2 Pt 1): 021404, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18850833

ABSTRACT

CoFe2O4-based ferrogels were prepared with both isotropic and anisotropic orientation of the magnetic anisotropy axis of the magnetic particles. In contrast to the superparamagnetic properties of the ferrofluid, the ferrogels exhibit hysteresis, indicating that (i) a significant fraction of magnetic particles has volumes beyond the critical value that allows Néelian relaxation, and (ii) a mechanical interaction between the particles and the polymer network exists, which prevents the particles from Brownian relaxation. The contribution of such particles was investigated by field cooling field warming and zero field cooling field warming measurements as well as temperature-dependent magnetization measurements. By application of an external field during gel polymerization, a magnetic texture was induced as confirmed by the angular dependence of mRmS and HC . The net-magnetic torque, exerted on the magnetic particles in an anisotropic ferrogel in combination with the soft elastic properties of the gel matrix enables the application as torsional soft actuator as demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL