Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
bioRxiv ; 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38405965

ABSTRACT

The Carbohydrate Response Element Binding Protein (ChREBP) is a glucose-responsive transcription factor (TF) that is characterized by two major splice isoforms (α and ß). In acute hyperglycemia, both ChREBP isoforms regulate adaptive ß-expansion; however, during chronic hyperglycemia and glucolipotoxicity, ChREBPß expression surges, leading to ß-cell dedifferentiation and death. 14-3-3 binding to ChREBPα results in its cytoplasmic retention and concomitant suppression of transcriptional activity, suggesting that small molecule-mediated stabilization of this protein-protein interaction (PPI) via molecular glues may represent an attractive entry for the treatment of metabolic disease. Here, we show that structure-based optimizations of a molecular glue tool compound led not only to more potent ChREBPα/14-3-3 PPI stabilizers but also for the first time cellular active compounds. In primary human ß-cells, the most active compound stabilized the ChREBPα/14-3-3 interaction and thus induced cytoplasmic retention of ChREBPα, resulting in highly efficient ß-cell protection from glucolipotoxicity while maintaining ß-cell identity. This study may thus not only provide the basis for the development of a unique class of compounds for the treatment of Type 2 Diabetes but also showcases an alternative 'molecular glue' approach for achieving small molecule control of notoriously difficult targetable TFs.

2.
Front Immunol ; 12: 669456, 2021.
Article in English | MEDLINE | ID: mdl-34163475

ABSTRACT

In Type 1 Diabetes (T1D), CD4+ T cells initiate autoimmune attack of pancreatic islet ß cells. Importantly, bioenergetic programs dictate T cell function, with specific pathways required for progression through the T cell lifecycle. During activation, CD4+ T cells undergo metabolic reprogramming to the less efficient aerobic glycolysis, similarly to highly proliferative cancer cells. In an effort to limit tumor growth in cancer, use of glycolytic inhibitors have been successfully employed in preclinical and clinical studies. This strategy has also been utilized to suppress T cell responses in autoimmune diseases like Systemic Lupus Erythematosus (SLE), Multiple Sclerosis (MS), and Rheumatoid Arthritis (RA). However, modulating T cell metabolism in the context of T1D has remained an understudied therapeutic opportunity. In this study, we utilized the small molecule PFK15, a competitive inhibitor of the rate limiting glycolysis enzyme 6-phosphofructo-2-kinase/fructose-2,6- biphosphatase 3 (PFKFB3). Our results confirmed PFK15 inhibited glycolysis utilization by diabetogenic CD4+ T cells and reduced T cell responses to ß cell antigen in vitro. In an adoptive transfer model of T1D, PFK15 treatment delayed diabetes onset, with 57% of animals remaining euglycemic at the end of the study period. Protection was due to induction of a hyporesponsive T cell phenotype, characterized by increased and sustained expression of the checkpoint molecules PD-1 and LAG-3 and downstream functional and metabolic exhaustion. Glycolysis inhibition terminally exhausted diabetogenic CD4+ T cells, which was irreversible through restimulation or checkpoint blockade in vitro and in vivo. In sum, our results demonstrate a novel therapeutic strategy to control aberrant T cell responses by exploiting the metabolic reprogramming of these cells during T1D. Moreover, the data presented here highlight a key role for nutrient availability in fueling T cell function and has implications in our understanding of T cell biology in chronic infection, cancer, and autoimmunity.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , Diabetes Mellitus, Type 1/drug therapy , Enzyme Inhibitors/pharmacology , Glycolysis/drug effects , Phosphofructokinase-2/antagonists & inhibitors , Pyridines/pharmacology , Quinolines/pharmacology , Adoptive Transfer , Animals , Antigens, CD/metabolism , Blood Glucose/drug effects , Blood Glucose/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/transplantation , Cells, Cultured , Cellular Reprogramming/drug effects , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Disease Models, Animal , Female , Male , Mice, Inbred NOD , Mice, SCID , Phosphofructokinase-2/metabolism , Programmed Cell Death 1 Receptor/metabolism , Time Factors , Lymphocyte Activation Gene 3 Protein
SELECTION OF CITATIONS
SEARCH DETAIL