Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Clin Cancer Res ; 30(10): 2121-2139, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38416404

ABSTRACT

PURPOSE: Mutations in the ATM gene are common in multiple cancers, but clinical studies of therapies targeting ATM-aberrant cancers have yielded mixed results. Refinement of ATM loss of function (LOF) as a predictive biomarker of response is urgently needed. EXPERIMENTAL DESIGN: We present the first disclosure and preclinical development of a novel, selective ATR inhibitor, ART0380, and test its antitumor activity in multiple preclinical cancer models. To refine ATM LOF as a predictive biomarker, we performed a comprehensive pan-cancer analysis of ATM variants in patient tumors and then assessed the ATM variant-to-protein relationship. Finally, we assessed a novel ATM LOF biomarker approach in retrospective clinical data sets of patients treated with platinum-based chemotherapy or ATR inhibition. RESULTS: ART0380 had potent, selective antitumor activity in a range of preclinical cancer models with differing degrees of ATM LOF. Pan-cancer analysis identified 10,609 ATM variants in 8,587 patient tumors. Cancer lineage-specific differences were seen in the prevalence of deleterious (Tier 1) versus unknown/benign (Tier 2) variants, selective pressure for loss of heterozygosity, and concordance between a deleterious variant and ATM loss of protein (LOP). A novel ATM LOF biomarker approach that accounts for variant classification, relationship to ATM LOP, and tissue-specific penetrance significantly enriched for patients who benefited from platinum-based chemotherapy or ATR inhibition. CONCLUSIONS: These data help to better define ATM LOF across tumor types in order to optimize patient selection and improve molecularly targeted therapeutic approaches for patients with ATM LOF cancers.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Neoplasms , Humans , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Animals , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/pathology , Mice , Loss of Function Mutation , Cell Line, Tumor , Biomarkers, Tumor/genetics , Xenograft Model Antitumor Assays , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Organ Specificity/genetics
2.
iScience ; 26(3): 106107, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36852271

ABSTRACT

The DNA-damage response is a complex signaling network that guards genomic integrity. The microtubule cytoskeleton is involved in the repair of DNA double-strand breaks; however, little is known about which cytoskeleton-related proteins are involved in DNA repair and how. Using quantitative proteomics, we discovered that microtubule associated proteins MAP7 and MAP7D1 interact with several DNA repair proteins including DNA double-strand break repair proteins RAD50, BRCA1 and 53BP1. We observed that downregulation of MAP7 and MAP7D1 leads to increased phosphorylation of p53 after γ-irradiation. Moreover, we determined that the downregulation of MAP7D1 leads to a strong G1 arrest and that the downregulation of MAP7 and MAP7D1 in G1 arrested cells negatively affects DNA repair, recruitment of RAD50 to chromatin and localization of 53BP1 to the sites of damage. These findings describe for the first time a novel function of MAP7 and MAP7D1 in cell cycle regulation and repair of DNA double-strand breaks.

3.
Front Oncol ; 12: 880552, 2022.
Article in English | MEDLINE | ID: mdl-35712511

ABSTRACT

Background: Mutations in the tumor suppressor gene Adenomatous Polyposis Coli (APC) are found in 80% of sporadic colorectal cancer (CRC) tumors and are also responsible for the inherited form of CRC, Familial adenomatous polyposis (FAP). Methods: To identify novel therapeutic strategies for the treatment of APC mutated CRC, we generated a drug screening platform that incorporates a human cellular model of APC mutant CRC using CRISPR-cas9 gene editing and performed an FDA-approved drug screen targeting over 1000 compounds. Results: We have identified the group of HMG-CoA Reductase (HMGCR) inhibitors known as statins, which cause a significantly greater loss in cell viability in the APC mutated cell lines and in in vivo APC mutated patient derived xenograft (PDX) models, compared to wild-type APC cells. Mechanistically, our data reveals this new synthetic lethal relationship is a consequence of decreased Wnt signalling and, ultimately, a reduction in the level of expression of the anti-apoptotic protein Survivin, upon statin treatment in the APC-mutant cells only. This mechanism acts via a Rac1 mediated control of beta-catenin. Conclusion: Significantly, we have identified a novel synthetic lethal dependence between APC mutations and statin treatment, which could potentially be exploited for the treatment of APC mutated cancers.

SELECTION OF CITATIONS
SEARCH DETAIL
...