Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 11(1): 162, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31919357

ABSTRACT

The emergence of drug-resistant influenza type A viruses (IAVs) necessitates the development of novel anti-IAV agents. Here, we target the IAV hemagglutinin (HA) protein using multivalent peptide library screens and identify PVF-tet, a peptide-based HA inhibitor. PVF-tet inhibits IAV cytopathicity and propagation in cells by binding to newly synthesized HA, rather than to the HA of the parental virus, thus inducing the accumulation of HA within a unique structure, the inducible amphisome, whose production from the autophagosome is accelerated by PVF-tet. The amphisome is also produced in response to IAV infection in the absence of PVF-tet by cells overexpressing ABC transporter subfamily A3, which plays an essential role in the maturation of multivesicular endosomes into the lamellar body, a lipid-sorting organelle. Our results show that the inducible amphisomes can function as a type of organelle-based anti-viral machinery by sequestering HA. PVF-tet efficiently rescues mice from the lethality of IAV infection.


Subject(s)
Antiviral Agents/pharmacology , Hemagglutinins, Viral/metabolism , Influenza A virus/growth & development , Orthomyxoviridae Infections/prevention & control , Peptides/pharmacology , ATP-Binding Cassette Transporters/biosynthesis , Animals , Autophagosomes/metabolism , Dogs , Drug Evaluation, Preclinical/methods , Endosomes/metabolism , Female , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Peptide Library , Sf9 Cells , Spodoptera
SELECTION OF CITATIONS
SEARCH DETAIL