Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 426, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589567

ABSTRACT

Wilms tumor (WT) is the most common renal malignancy of childhood. Despite improvements in the overall survival, relapse occurs in ~15% of patients with favorable histology WT (FHWT). Half of these patients will succumb to their disease. Identifying novel targeted therapies remains challenging in part due to the lack of faithful preclinical in vitro models. Here we establish twelve patient-derived WT cell lines and demonstrate that these models faithfully recapitulate WT biology using genomic and transcriptomic techniques. We then perform loss-of-function screens to identify the nuclear export gene, XPO1, as a vulnerability. We find that the FDA approved XPO1 inhibitor, KPT-330, suppresses TRIP13 expression, which is required for survival. We further identify synergy between KPT-330 and doxorubicin, a chemotherapy used in high-risk FHWT. Taken together, we identify XPO1 inhibition with KPT-330 as a potential therapeutic option to treat FHWTs and in combination with doxorubicin, leads to durable remissions in vivo.


Subject(s)
Hydrazines , Kidney Neoplasms , Triazoles , Wilms Tumor , Humans , Exportin 1 Protein , Active Transport, Cell Nucleus , Karyopherins/genetics , Karyopherins/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Cell Line, Tumor , Apoptosis , Neoplasm Recurrence, Local , Doxorubicin/pharmacology , Wilms Tumor/drug therapy , Wilms Tumor/genetics , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Cell Cycle Proteins/metabolism
2.
Article in English | MEDLINE | ID: mdl-38669694

ABSTRACT

There is a high unmet need for early detection approaches for diffuse gastric cancer (DGC). We examined whether the stool proteome of mouse models of GC or individuals with hereditary diffuse GC (HDGC) have utility as biomarkers for early detection. Proteomic mass spectrometry of stool from a genetically engineered mouse model driven by oncogenic KrasG12D and loss of p53 and Cdh1 in gastric parietal cells (known as TCON mice) identified differentially abundant proteins compared to littermate controls. Immunoblot assays validated a panel of proteins including actinin alpha 4 (ACTN4), N-acylsphingosine amidohydrolase 2 (ASAH2), dipeptidyl peptidase 4 (DPP4), and valosin-containing protein (VCP) as enriched in TCON stool compared to littermate control stool. Immunofluorescence analysis of these proteins in TCON stomach sections revealed increased protein expression as compared to littermate controls. Proteomic mass spectrometry of stool obtained from HDGC patients with CDH1 mutations identified increased expression of ASAH2, DPP4, VCP, lactotransferrin (LTF), and tropomyosin-2 (TPM2) relative to stool from healthy sex and age-matched donors. Chemical inhibition of ASAH2 using C6-urea ceramide was toxic to GC cell lines and patient derived-GC organoids. This toxicity was reversed by adding downstream products of the S1P synthesis pathway, suggesting a dependency on ASAH2 activity in GC. An exploratory analysis of the HDGC stool microbiome identified features which correlated with patient tumors. Here we provide evidence supporting the potential of analyzing stool biomarkers for the early detection of DGC.

4.
Nat Genet ; 55(10): 1709-1720, 2023 10.
Article in English | MEDLINE | ID: mdl-37749246

ABSTRACT

The paradigm of cancer-targeted therapies has focused largely on inhibition of critical pathways in cancer. Conversely, conditional activation of signaling pathways as a new source of selective cancer vulnerabilities has not been deeply characterized. In this study, we sought to systematically identify context-specific gene-activation-induced lethalities in cancer. To this end, we developed a method for gain-of-function genetic perturbations simultaneously across ~500 barcoded cancer cell lines. Using this approach, we queried the pan-cancer vulnerability landscape upon activating ten key pathway nodes, revealing selective activation dependencies of MAPK and PI3K pathways associated with specific biomarkers. Notably, we discovered new pathway hyperactivation dependencies in subsets of APC-mutant colorectal cancers where further activation of the WNT pathway by APC knockdown or direct ß-catenin overexpression led to robust antitumor effects in xenograft and patient-derived organoid models. Together, this study reveals a new class of conditional gene-activation dependencies in cancer.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/pathology , Phosphatidylinositol 3-Kinases , beta Catenin/genetics , Wnt Signaling Pathway/genetics , Cell Proliferation , Cell Line, Tumor
5.
Small ; 19(49): e2302401, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37559167

ABSTRACT

For the past century, trypsin has been the primary method of cell dissociation, largely without any major changes to the process. Enzymatic cell detachment strategies for large-scale cell culturing processes are popular but can be labor-intensive, potentially lead to the accumulation of genetic mutations, and produce large quantities of liquid waste. Therefore, engineering surfaces to lower cell adhesion strength could enable the next generation of cell culture surfaces for delicate primary cells and automated, high-throughput workflows. In this study, a process for creating microtextured polystyrene (PS) surfaces to measure the impact of microposts on the adhesion strength of cells is developed. Cell viability and proliferation assays show comparable results in two cancer cell lines between micropost surfaces and standard cell culture vessels. However, cell image analysis on microposts reveals that cell area decreases by half, and leads to an average twofold increase in cell length per area. Using a microfluidic-based method up to a seven times greater percentage of cells are removed from micropost surfaces than the flat control surfaces. These results show that micropost surfaces enable decreased cell adhesion strength while maintaining similar cell viabilities and proliferation as compared to flat PS surfaces.


Subject(s)
Cell Culture Techniques , Neoplasms , Cell Adhesion , Cells, Cultured , Physical Phenomena
6.
Nat Commun ; 13(1): 1606, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35338135

ABSTRACT

The cellular processes that govern tumor resistance to immunotherapy remain poorly understood. To gain insight into these processes, here we perform a genome-scale CRISPR activation screen for genes that enable human melanoma cells to evade cytotoxic T cell killing. Overexpression of four top candidate genes (CD274 (PD-L1), MCL1, JUNB, and B3GNT2) conferred resistance in diverse cancer cell types and mouse xenografts. By investigating the resistance mechanisms, we find that MCL1 and JUNB modulate the mitochondrial apoptosis pathway. JUNB encodes a transcription factor that downregulates FasL and TRAIL receptors, upregulates the MCL1 relative BCL2A1, and activates the NF-κB pathway. B3GNT2 encodes a poly-N-acetyllactosamine synthase that targets >10 ligands and receptors to disrupt interactions between tumor and T cells and reduce T cell activation. Inhibition of candidate genes sensitized tumor models to T cell cytotoxicity. Our results demonstrate that systematic gain-of-function screening can elucidate resistance pathways and identify potential targets for cancer immunotherapy.


Subject(s)
Melanoma , Proto-Oncogene Proteins c-bcl-2 , Animals , Apoptosis/genetics , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Humans , Melanoma/genetics , Melanoma/pathology , Mice , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , N-Acetylglucosaminyltransferases/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
7.
Prostate ; 82(5): 584-597, 2022 04.
Article in English | MEDLINE | ID: mdl-35084050

ABSTRACT

BACKGROUND: Primary and metastatic prostate cancers have low mutation rates and recurrent alterations in a small set of genes, enabling targeted sequencing of prostate cancer-associated genes as an efficient approach to characterizing patient samples (compared to whole-exome and whole-genome sequencing). For example, targeted sequencing provides a flexible, rapid, and cost-effective method for genomic assessment of patient-derived cell lines to evaluate fidelity to initial patient tumor samples. METHODS: We developed a prostate cancer-specific targeted next-generation sequencing (NGS) panel to detect alterations in 62 prostate cancer-associated genes as well as recurring gene fusions with ETS family members, representing the majority of common alterations in prostate cancer. We tested this panel on primary prostate cancer tissues and blood biopsies from patients with metastatic prostate cancer. We generated patient-derived cell lines from primary prostate cancers using conditional reprogramming methods and applied targeted sequencing to evaluate the fidelity of these cell lines to the original patient tumors. RESULTS: The prostate cancer-specific panel identified biologically and clinically relevant alterations, including point mutations in driver oncogenes and ETS family fusion genes, in tumor tissues from 29 radical prostatectomy samples. The targeted panel also identified genomic alterations in cell-free DNA and circulating tumor cells (CTCs) from patients with metastatic prostate cancer, and in standard prostate cancer cell lines. We used the targeted panel to sequence our set of patient-derived cell lines; however, no prostate cancer-specific mutations were identified in the tumor-derived cell lines, suggesting preferential outgrowth of normal prostate epithelial cells. CONCLUSIONS: We evaluated a prostate cancer-specific targeted NGS panel to detect common and clinically relevant alterations (including ETS family gene fusions) in prostate cancer. The panel detected driver mutations in a diverse set of clinical samples of prostate cancer, including fresh-frozen tumors, cell-free DNA, CTCs, and cell lines. Targeted sequencing of patient-derived cell lines highlights the challenge of deriving cell lines from primary prostate cancers and the importance of genomic characterization to credential candidate cell lines. Our study supports that a prostate cancer-specific targeted sequencing panel provides an efficient, clinically feasible approach to identify genetic alterations across a spectrum of prostate cancer samples and cell lines.


Subject(s)
Cell-Free Nucleic Acids , Prostatic Neoplasms , Cell Line , Credentialing , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Mutation , Prostatic Neoplasms/genetics
8.
Nature ; 568(7753): 551-556, 2019 04.
Article in English | MEDLINE | ID: mdl-30971823

ABSTRACT

Synthetic lethality-an interaction between two genetic events through which the co-occurrence of these two genetic events leads to cell death, but each event alone does not-can be exploited for cancer therapeutics1. DNA repair processes represent attractive synthetic lethal targets, because many cancers exhibit an impairment of a DNA repair pathway, which can lead to dependence on specific repair proteins2. The success of poly(ADP-ribose) polymerase 1 (PARP-1) inhibitors in cancers with deficiencies in homologous recombination highlights the potential of this approach3. Hypothesizing that other DNA repair defects would give rise to synthetic lethal relationships, we queried dependencies in cancers with microsatellite instability (MSI), which results from deficient DNA mismatch repair. Here we analysed data from large-scale silencing screens using CRISPR-Cas9-mediated knockout and RNA interference, and found that the RecQ DNA helicase WRN was selectively essential in MSI models in vitro and in vivo, yet dispensable in models of cancers that are microsatellite stable. Depletion of WRN induced double-stranded DNA breaks and promoted apoptosis and cell cycle arrest selectively in MSI models. MSI cancer models required the helicase activity of WRN, but not its exonuclease activity. These findings show that WRN is a synthetic lethal vulnerability and promising drug target for MSI cancers.


Subject(s)
Microsatellite Instability , Microsatellite Repeats/genetics , Neoplasms/genetics , Synthetic Lethal Mutations/genetics , Werner Syndrome Helicase/genetics , Apoptosis/genetics , CRISPR-Cas Systems/genetics , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , DNA Breaks, Double-Stranded , Humans , Models, Genetic , Neoplasms/pathology , RNA Interference , Tumor Suppressor Protein p53/metabolism , Werner Syndrome Helicase/deficiency
9.
Nat Commun ; 10(1): 1617, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30962421

ABSTRACT

Clear-cell carcinomas (CCCs) are a histological group of highly aggressive malignancies commonly originating in the kidney and ovary. CCCs are distinguished by aberrant lipid and glycogen accumulation and are refractory to a broad range of anti-cancer therapies. Here we identify an intrinsic vulnerability to ferroptosis associated with the unique metabolic state in CCCs. This vulnerability transcends lineage and genetic landscape, and can be exploited by inhibiting glutathione peroxidase 4 (GPX4) with small-molecules. Using CRISPR screening and lipidomic profiling, we identify the hypoxia-inducible factor (HIF) pathway as a driver of this vulnerability. In renal CCCs, HIF-2α selectively enriches polyunsaturated lipids, the rate-limiting substrates for lipid peroxidation, by activating the expression of hypoxia-inducible, lipid droplet-associated protein (HILPDA). Our study suggests targeting GPX4 as a therapeutic opportunity in CCCs, and highlights that therapeutic approaches can be identified on the basis of cell states manifested by morphological and metabolic features in hard-to-treat cancers.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinoma, Renal Cell/pathology , Glutathione Peroxidase/metabolism , Kidney Neoplasms/pathology , Neoplasm Proteins/metabolism , Aged , Animals , Apoptosis/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , CRISPR-Cas Systems/genetics , Carcinoma, Renal Cell/genetics , Cell Line, Tumor , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Glutathione Peroxidase/genetics , HEK293 Cells , Humans , Iron/metabolism , Kidney Neoplasms/genetics , Lipid Peroxidation/genetics , Male , Mice, Nude , Middle Aged , Neoplasm Proteins/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase , RNA Interference , Xenograft Model Antitumor Assays
10.
Curr Opin Genet Dev ; 54: 33-40, 2019 02.
Article in English | MEDLINE | ID: mdl-30928774

ABSTRACT

Precision cancer medicine is based on the ability to predict the dependencies of a given tumor from its molecular makeup. These dependencies can be exploited with targeted, cytotoxic and/or immunity-inducing therapeutics. Ongoing efforts to perform genomic and cellular analyses on clinically annotated patient tumors are powerful, but bounded to existing therapies and focused cohorts. Here, we describe how living tumor material is increasingly being used in the generation of a systematic laboratory-based functional map of cancer dependencies (a 'Cancer Dependency Map'). In particular, we emphasize the important contributions of long-term cell models, emerging uses for short-term cell models and future potential for 'alpha cultures' that are mere hours or days from the cancer patient. Collecting research-grade cancer dependency data with each of these model formats could pave the way to ensure that the Map increasingly reflects all tumors. The integration of clinical genomics and preclinical functional genomics data should provide a powerful research platform to improve the accuracy of precision medicine predictions.


Subject(s)
Biosensing Techniques , Neoplasms/drug therapy , Precision Medicine , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Genomics , Humans , Neoplasms/genetics , Neoplasms/pathology
11.
Elife ; 82019 03 12.
Article in English | MEDLINE | ID: mdl-30860482

ABSTRACT

Renal medullary carcinoma (RMC) is a rare and deadly kidney cancer in patients of African descent with sickle cell trait. We have developed faithful patient-derived RMC models and using whole-genome sequencing, we identified loss-of-function intronic fusion events in one SMARCB1 allele with concurrent loss of the other allele. Biochemical and functional characterization of these models revealed that RMC requires the loss of SMARCB1 for survival. Through integration of RNAi and CRISPR-Cas9 loss-of-function genetic screens and a small-molecule screen, we found that the ubiquitin-proteasome system (UPS) was essential in RMC. Inhibition of the UPS caused a G2/M arrest due to constitutive accumulation of cyclin B1. These observations extend across cancers that harbor SMARCB1 loss, which also require expression of the E2 ubiquitin-conjugating enzyme, UBE2C. Our studies identify a synthetic lethal relationship between SMARCB1-deficient cancers and reliance on the UPS which provides the foundation for a mechanism-informed clinical trial with proteasome inhibitors.


Subject(s)
Carcinoma, Medullary/genetics , Kidney Neoplasms/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Inhibitors/pharmacology , SMARCB1 Protein/genetics , Alleles , Animals , CRISPR-Cas Systems , Carcinoma, Medullary/drug therapy , Cell Cycle , Cell Line, Tumor , Exome , Female , Humans , In Situ Hybridization, Fluorescence , Kidney/metabolism , Kidney Neoplasms/drug therapy , Mice , Mice, Nude , Mutation , Neoplasm Transplantation , RNA Interference , Sequence Analysis, RNA , Ubiquitin/chemistry , Whole Genome Sequencing
12.
Clin Cancer Res ; 25(4): 1343-1357, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30397176

ABSTRACT

PURPOSE: Novel targeted therapeutics have transformed the care of subsets of patients with cancer. In pediatric malignancies, however, with simple tumor genomes and infrequent targetable mutations, there have been few new FDA-approved targeted drugs. The cyclin-dependent kinase (CDK)4/6 pathway recently emerged as a dependency in Ewing sarcoma. Given the heightened efficacy of this class with targeted drug combinations in other cancers, as well as the propensity of resistance to emerge with single agents, we aimed to identify genes mediating resistance to CDK4/6 inhibitors and biologically relevant combinations for use with CDK4/6 inhibitors in Ewing. EXPERIMENTAL DESIGN: We performed a genome-scale open reading frame (ORF) screen in 2 Ewing cell lines sensitive to CDK4/6 inhibitors to identify genes conferring resistance. Concurrently, we established resistance to a CDK4/6 inhibitor in a Ewing cell line. RESULTS: The ORF screen revealed IGF1R as a gene whose overexpression promoted drug escape. We also found elevated levels of phospho-IGF1R in our resistant Ewing cell line, supporting the relevance of IGF1R signaling to acquired resistance. In a small-molecule screen, an IGF1R inhibitor scored as synergistic with CDK4/6 inhibitor treatment. The combination of CDK4/6 inhibitors and IGF1R inhibitors was synergistic in vitro and active in mouse models. Mechanistically, this combination more profoundly repressed cell cycle and PI3K/mTOR signaling than either single drug perturbation. CONCLUSIONS: Taken together, these results suggest that IGF1R inhibitors activation is an escape mechanism to CDK4/6 inhibitors in Ewing sarcoma and that dual targeting of CDK4/6 inhibitors and IGF1R inhibitors provides a candidate synergistic combination for clinical application in this disease.


Subject(s)
Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/genetics , Receptor, IGF Type 1/genetics , Sarcoma, Ewing/drug therapy , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Drug Resistance, Neoplasm/genetics , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Protein Kinase Inhibitors/pharmacology , Receptor, IGF Type 1/antagonists & inhibitors , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology , Signal Transduction/drug effects , Small Molecule Libraries/pharmacology , Xenograft Model Antitumor Assays
13.
Methods Mol Biol ; 1907: 197-212, 2019.
Article in English | MEDLINE | ID: mdl-30543002

ABSTRACT

Over the last several decades, multiple recurrent chromosomal amplifications and deletions have been detected in a large number of cancers. These regions of amplification and deletion can encompass a few to several hundred genes. Determining which of these genes is causing the outgrowth of the cancer is difficult. Complicating the analysis is the fact that several genes within the affected chromosomal region may cooperate to promote tumorigenesis. In this protocol we describe a method of chromosomal engineering in mice that allows modeling of chromosomal duplications and deficiencies. This method faithfully recapitulates several aspects of chromosomal loss and gain in human cancers and can reveal cancer drivers difficult to identify by other means.


Subject(s)
Chromosome Aberrations , Gene Targeting , Genetic Engineering/methods , Genomics/methods , Mouse Embryonic Stem Cells/metabolism , Neoplasm Proteins/genetics , Neoplasms/genetics , Animals , Humans , Integrases/metabolism , Mice , Mouse Embryonic Stem Cells/cytology , Neoplasms/pathology , Recombination, Genetic
14.
Cell ; 175(7): 1972-1988.e16, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30550791

ABSTRACT

In vitro cancer cultures, including three-dimensional organoids, typically contain exclusively neoplastic epithelium but require artificial reconstitution to recapitulate the tumor microenvironment (TME). The co-culture of primary tumor epithelia with endogenous, syngeneic tumor-infiltrating lymphocytes (TILs) as a cohesive unit has been particularly elusive. Here, an air-liquid interface (ALI) method propagated patient-derived organoids (PDOs) from >100 human biopsies or mouse tumors in syngeneic immunocompetent hosts as tumor epithelia with native embedded immune cells (T, B, NK, macrophages). Robust droplet-based, single-cell simultaneous determination of gene expression and immune repertoire indicated that PDO TILs accurately preserved the original tumor T cell receptor (TCR) spectrum. Crucially, human and murine PDOs successfully modeled immune checkpoint blockade (ICB) with anti-PD-1- and/or anti-PD-L1 expanding and activating tumor antigen-specific TILs and eliciting tumor cytotoxicity. Organoid-based propagation of primary tumor epithelium en bloc with endogenous immune stroma should enable immuno-oncology investigations within the TME and facilitate personalized immunotherapy testing.


Subject(s)
Models, Immunological , Neoplasms, Experimental/immunology , Organoids/immunology , Receptors, Antigen, T-Cell/immunology , Tumor Microenvironment/immunology , Animals , B7-H1 Antigen/immunology , Coculture Techniques , Female , Humans , Immunotherapy , Male , Mice , Mice, Inbred BALB C , Neoplasm Proteins/immunology , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy , Organoids/pathology
15.
Nat Genet ; 49(11): 1567-1575, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28991255

ABSTRACT

Patient-derived xenografts (PDXs) have become a prominent cancer model system, as they are presumed to faithfully represent the genomic features of primary tumors. Here we monitored the dynamics of copy number alterations (CNAs) in 1,110 PDX samples across 24 cancer types. We observed rapid accumulation of CNAs during PDX passaging, often due to selection of preexisting minor clones. CNA acquisition in PDXs was correlated with the tissue-specific levels of aneuploidy and genetic heterogeneity observed in primary tumors. However, the particular CNAs acquired during PDX passaging differed from those acquired during tumor evolution in patients. Several CNAs recurrently observed in primary tumors gradually disappeared in PDXs, indicating that events undergoing positive selection in humans can become dispensable during propagation in mice. Notably, the genomic stability of PDXs was associated with their response to chemotherapy and targeted drugs. These findings have major implications for PDX-based modeling of human cancer.


Subject(s)
Clonal Evolution/genetics , DNA Copy Number Variations , Heterografts/metabolism , Neoplasms/genetics , Aneuploidy , Animals , Antineoplastic Agents/pharmacology , Clone Cells , DNA, Neoplasm/genetics , DNA, Neoplasm/metabolism , Disease Models, Animal , Heterografts/drug effects , Heterografts/pathology , Humans , Mice , Neoplasms/classification , Neoplasms/drug therapy , Neoplasms/pathology , Selection, Genetic , Species Specificity , Tumor Cells, Cultured
17.
Nature ; 548(7667): 343-346, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28792927

ABSTRACT

Mammalian genomes contain thousands of loci that transcribe long noncoding RNAs (lncRNAs), some of which are known to carry out critical roles in diverse cellular processes through a variety of mechanisms. Although some lncRNA loci encode RNAs that act non-locally (in trans), there is emerging evidence that many lncRNA loci act locally (in cis) to regulate the expression of nearby genes-for example, through functions of the lncRNA promoter, transcription, or transcript itself. Despite their potentially important roles, it remains challenging to identify functional lncRNA loci and distinguish among these and other mechanisms. Here, to address these challenges, we developed a genome-scale CRISPR-Cas9 activation screen that targets more than 10,000 lncRNA transcriptional start sites to identify noncoding loci that influence a phenotype of interest. We found 11 lncRNA loci that, upon recruitment of an activator, mediate resistance to BRAF inhibitors in human melanoma cells. Most candidate loci appear to regulate nearby genes. Detailed analysis of one candidate, termed EMICERI, revealed that its transcriptional activation resulted in dosage-dependent activation of four neighbouring protein-coding genes, one of which confers the resistance phenotype. Our screening and characterization approach provides a CRISPR toolkit with which to systematically discover the functions of noncoding loci and elucidate their diverse roles in gene regulation and cellular function.


Subject(s)
Drug Resistance, Neoplasm/genetics , Genetic Loci/genetics , Genome, Human/genetics , Indoles/pharmacology , Melanoma/genetics , RNA, Long Noncoding/genetics , Sulfonamides/pharmacology , Transcriptional Activation/genetics , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Genetic Loci/drug effects , Hippo Signaling Pathway , Humans , Indoles/therapeutic use , Melanoma/drug therapy , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Phenotype , Promoter Regions, Genetic/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Signal Transduction/drug effects , Sulfonamides/therapeutic use , Transcription Initiation Site , Vemurafenib
18.
Nature ; 547(7664): 453-457, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28678785

ABSTRACT

Plasticity of the cell state has been proposed to drive resistance to multiple classes of cancer therapies, thereby limiting their effectiveness. A high-mesenchymal cell state observed in human tumours and cancer cell lines has been associated with resistance to multiple treatment modalities across diverse cancer lineages, but the mechanistic underpinning for this state has remained incompletely understood. Here we molecularly characterize this therapy-resistant high-mesenchymal cell state in human cancer cell lines and organoids and show that it depends on a druggable lipid-peroxidase pathway that protects against ferroptosis, a non-apoptotic form of cell death induced by the build-up of toxic lipid peroxides. We show that this cell state is characterized by activity of enzymes that promote the synthesis of polyunsaturated lipids. These lipids are the substrates for lipid peroxidation by lipoxygenase enzymes. This lipid metabolism creates a dependency on pathways converging on the phospholipid glutathione peroxidase (GPX4), a selenocysteine-containing enzyme that dissipates lipid peroxides and thereby prevents the iron-mediated reactions of peroxides that induce ferroptotic cell death. Dependency on GPX4 was found to exist across diverse therapy-resistant states characterized by high expression of ZEB1, including epithelial-mesenchymal transition in epithelial-derived carcinomas, TGFß-mediated therapy-resistance in melanoma, treatment-induced neuroendocrine transdifferentiation in prostate cancer, and sarcomas, which are fixed in a mesenchymal state owing to their cells of origin. We identify vulnerability to ferroptic cell death induced by inhibition of a lipid peroxidase pathway as a feature of therapy-resistant cancer cells across diverse mesenchymal cell-state contexts.


Subject(s)
Glutathione Peroxidase/metabolism , Lipid Peroxidation/drug effects , Neoplasms/drug therapy , Neoplasms/enzymology , Cadherins/metabolism , Cell Death , Cell Line, Tumor , Cell Lineage , Cell Transdifferentiation , Drug Resistance, Neoplasm/genetics , Epithelial-Mesenchymal Transition , Humans , Iron/metabolism , Lipid Peroxides/metabolism , Male , Melanoma/drug therapy , Melanoma/enzymology , Melanoma/metabolism , Melanoma/pathology , Mesoderm/drug effects , Mesoderm/enzymology , Mesoderm/metabolism , Mesoderm/pathology , Neoplasms/genetics , Neoplasms/pathology , Phospholipid Hydroperoxide Glutathione Peroxidase , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Proteomics , Proto-Oncogene Proteins B-raf/genetics , Reproducibility of Results , Zinc Finger E-box-Binding Homeobox 1/genetics
19.
PLoS Genet ; 12(8): e1006242, 2016 08.
Article in English | MEDLINE | ID: mdl-27494029

ABSTRACT

Renal angiomyolipoma is a kidney tumor in the perivascular epithelioid (PEComa) family that is common in patients with Tuberous Sclerosis Complex (TSC) and Lymphangioleiomyomatosis (LAM) but occurs rarely sporadically. Though histologically benign, renal angiomyolipoma can cause life-threatening hemorrhage and kidney failure. Both angiomyolipoma and LAM have mutations in TSC2 or TSC1. However, the frequency and contribution of other somatic events in tumor development is unknown. We performed whole exome sequencing in 32 resected tumor samples (n = 30 angiomyolipoma, n = 2 LAM) from 15 subjects, including three with TSC. Two germline and 22 somatic inactivating mutations in TSC2 were identified, and one germline TSC1 mutation. Twenty of 32 (62%) samples showed copy neutral LOH (CN-LOH) in TSC2 or TSC1 with at least 8 different LOH regions, and 30 of 32 (94%) had biallelic loss of either TSC2 or TSC1. Whole exome sequencing identified a median of 4 somatic non-synonymous coding region mutations (other than in TSC2/TSC1), a mutation rate lower than nearly all other cancer types. Three genes with mutations were known cancer associated genes (BAP1, ARHGAP35 and SPEN), but they were mutated in a single sample each, and were missense variants with uncertain functional effects. Analysis of sixteen angiomyolipomas from a TSC subject showed both second hit point mutations and CN-LOH in TSC2, many of which were distinct, indicating that they were of independent clonal origin. However, three tumors had two shared mutations in addition to private somatic mutations, suggesting a branching evolutionary pattern of tumor development following initiating loss of TSC2. Our results indicate that TSC2 and less commonly TSC1 alterations are the primary essential driver event in angiomyolipoma/LAM, whereas other somatic mutations are rare and likely do not contribute to tumor development.


Subject(s)
Angiomyolipoma/genetics , Kidney Neoplasms/genetics , Lymphangioleiomyomatosis/genetics , Tumor Suppressor Proteins/genetics , Adult , Angiomyolipoma/pathology , Carcinogenesis/genetics , Exome/genetics , Female , Germ-Line Mutation , High-Throughput Nucleotide Sequencing , Humans , Kidney Neoplasms/pathology , Loss of Heterozygosity/genetics , Lymphangioleiomyomatosis/pathology , Male , Mutation , Tuberous Sclerosis Complex 1 Protein , Tuberous Sclerosis Complex 2 Protein
20.
Nat Commun ; 7: 11987, 2016 06 22.
Article in English | MEDLINE | ID: mdl-27329820

ABSTRACT

Identifying therapeutic targets in rare cancers remains challenging due to the paucity of established models to perform preclinical studies. As a proof-of-concept, we developed a patient-derived cancer cell line, CLF-PED-015-T, from a paediatric patient with a rare undifferentiated sarcoma. Here, we confirm that this cell line recapitulates the histology and harbours the majority of the somatic genetic alterations found in a metastatic lesion isolated at first relapse. We then perform pooled CRISPR-Cas9 and RNAi loss-of-function screens and a small-molecule screen focused on druggable cancer targets. Integrating these three complementary and orthogonal methods, we identify CDK4 and XPO1 as potential therapeutic targets in this cancer, which has no known alterations in these genes. These observations establish an approach that integrates new patient-derived models, functional genomics and chemical screens to facilitate the discovery of targets in rare cancers.


Subject(s)
Cyclin-Dependent Kinase 4/genetics , Karyopherins/genetics , Rare Diseases/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Sarcoma/genetics , A549 Cells , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , CRISPR-Cas Systems , Cell Cycle , Cell Line, Tumor , Doxorubicin/administration & dosage , Drug Screening Assays, Antitumor , Exome , Female , Genomics , Humans , Hydrazines/administration & dosage , Mice , Mice, Nude , Neoplasm Metastasis , Neoplasm Recurrence, Local , Neoplasm Transplantation , Piperazines/administration & dosage , Pyridines/administration & dosage , RNA Interference , Rare Diseases/drug therapy , Sarcoma/drug therapy , Sequence Analysis, RNA , Triazoles/administration & dosage , Exportin 1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...