Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Reports ; 19(8): 1107-1121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38964324

ABSTRACT

Biallelic mutations in DRAM2 lead to an autosomal recessive cone-rod dystrophy known as CORD21, which typically presents between the third and sixth decades of life. Although DRAM2 localizes to the lysosomes of photoreceptor and retinal pigment epithelium (RPE) cells, its specific role in retinal degeneration has not been fully elucidated. In this study, we generated and characterized retinal organoids (ROs) and RPE cells from induced pluripotent stem cells (iPSCs) derived from two CORD21 patients. Our investigation revealed that CORD21-ROs and RPE cells exhibit abnormalities in lipid metabolism, defects in autophagic flux, accumulation of aberrant lysosomal content, and reduced lysosomal enzyme activity. We identified potential interactions of DRAM2 with vesicular trafficking proteins, suggesting its involvement in this cellular process. These findings collectively suggest that DRAM2 plays a crucial role in maintaining the integrity of photoreceptors and RPE cells by regulating lysosomal function, autophagy, and potentially vesicular trafficking.


Subject(s)
Autophagy , Induced Pluripotent Stem Cells , Lysosomes , Membrane Proteins , Retinal Pigment Epithelium , Humans , Lysosomes/metabolism , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Autophagy/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Organoids/metabolism , Organoids/pathology , Cone-Rod Dystrophies/genetics , Cone-Rod Dystrophies/metabolism , Cone-Rod Dystrophies/pathology , Retina/metabolism , Retina/pathology , Lipid Metabolism , Mutation
2.
J Funct Biomater ; 13(3)2022 Jul 31.
Article in English | MEDLINE | ID: mdl-35997447

ABSTRACT

Polymeric nanoparticles have been introduced as a delivery vehicle for active compounds in a broad range of medical applications due to their biocompatibility, stability, controlled release of active compounds, and reduced toxicity. The oral route is the most used approach for delivery of biologics to the body. The homeostasis and function of oral cavity tissues are dependent on the activity of stem cells. The present work focuses, for the first time, on the interaction between two types of polymeric nanoparticles, poly (lactic-co-glycolic acid) or PLGA and PLGA/chitosan, and two stem cell populations, oral keratinocyte stem cells (OKSCs) and stem cells from human exfoliated deciduous teeth (SHEDs). The main results show that statistical significance was observed in OKSCs uptake when compared with normal keratinocytes and transit amplifying cells after 24 h of incubation with 5 and 10 µg/mL PLGA/chitosan. The CD117+ SHED subpopulation incorporated more PLGA/chitosan nanoparticles than nonseparated SHED. The uptake for PLGA/chitosan particles was better than for PLGA particles with longer incubation times, yielding better results in both cell types. The present results demonstrate that nanoparticle uptake depends on stem cell type, incubation time, particle concentration, and surface properties.

3.
J Proteomics ; 183: 14-24, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29758290

ABSTRACT

FGF8 specifies early tooth development by directing the migration of the early tooth founder cells to the site of tooth emergence. To date the effect of the FGF8 in adult dental pulp has not been studied. We have assessed the regenerative potential of FGF8 by evaluating changes in the proteome landscape of dental pulp following short- and long-term exposure to recombinant FGF8 protein. In addition, we carried out qRT PCR analysis to determine extracellular/adhesion gene marker expression and assessed cell proliferation and mineralization in response to FGF8 treatment. 2D and mass spectrometry data showed differential expression of proteins implicated in cytoskeleton/ECM remodeling and migration, cell proliferation and odontogenic differentiation as evidenced by the upregulation of gelsolin, moesin, LMNA, WDR1, PLOD2, COPS5 and downregulation of P4HB. qRT PCR showed downregulation of proteins involved in cell-matrix adhesion such as ADAMTS8, LAMB3 and ANOS1 and increased expression of the angiogenesis marker PECAM1. We have observed that, FGF8 treatment was able to boost dental pulp cell proliferation and to enhance dental pulp mineralization. Collectively, our data suggest that, FGF8 treatment could promote endogenous healing of the dental pulp via recruitment of dental pulp progenitors as well as by promoting their angiogenic and odontogenic differentiation. SIGNIFICANCE: Dental pulp cells (DP) have been studied extensively for the purposes of mineralized tissue repair, particularly for the reconstruction of hard and soft tissue maxillofacial defects. Canonical FGF signaling has been implicated throughout multiple stages of tooth development by regulating cell proliferation, differentiation, survival as well as cellular migration. FGF8 expression is indispensible for normal tooth development and particularly for the migration of early tooth progenitors to the sites of tooth emergence. The present study provides proteome and qRT PCR data with regard to the future application and biological relevance of FGF8 in dental regenerative medicine. AUTHORS WITH ORCID: Rozaliya Tsikandelova - 0000-0003-0178-3767 Zornitsa Mihaylova - 0000-0003-1748-4489 Sébastien Planchon - 0000-0002-0455-0574 Nikolay Ishkitiev - 0000-0002-4351-5579.


Subject(s)
Dental Pulp/cytology , Fibroblast Growth Factor 8/pharmacology , Proteome/metabolism , Regeneration/drug effects , Adult , Cell Differentiation , Cell Movement , Cell Proliferation/drug effects , Dental Pulp/drug effects , Dental Pulp/physiology , Gene Expression Regulation , Humans , Minerals/metabolism , Polymerase Chain Reaction , Proteome/drug effects , Proteome/physiology
4.
Arch Oral Biol ; 85: 1-9, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29028628

ABSTRACT

OBJECTIVE: Platelet-derived growth factor-BB (PDGF-BB) is one of the most abundant growth factors in platelet derived products and has been shown to stimulate regeneration after tissue injury. There is a population of mesenchymal stem cells (MSC) in human periodontal ligament (PDL) which can contribute to tissue regeneration under appropriate conditions. DESIGN: PDL cells were isolated and characterized using stem cell and differentiation markers via immunofluorescence and flow cytometry and then cultured in vitro and treated with different concentrations of PDGF-BB. The effect of PDGF-BB on cell proliferation, stem cell and differentiation markers expression, soluble collagen production, lysyl oxidase (LOX) activity, alkaline phosphatase (ALP) activity and calcium nodules formation was assessed. RESULTS: PDGF-BB stimulated the proliferation of cells with the maximum effect at 50ng/mL. The growth factor increased the expression of stem cell markers and SPARC; Col1a2 expression was decreased, whereas the expression of Col3a1 remain unchanged. Soluble collagen production, ALP activity and calcium nodules formation were also significantly decreased by PDGF-BB; LOX activity was significantly increased. CONCLUSIONS: PDGF-BB is a powerful promoter of cell proliferation and increases the expression of stem cell markers; inhibites collagen production and mineraliration but accelerates the maturation of collagen chains through increased LOX activity and SPARC expression.


Subject(s)
Cell Differentiation/drug effects , Cell Proliferation/drug effects , Mesenchymal Stem Cells/drug effects , Periodontal Ligament/cytology , Platelet-Derived Growth Factor/pharmacology , Adolescent , Adult , Biomarkers/analysis , Cells, Cultured , Female , Flow Cytometry , Fluorescent Antibody Technique , Humans , In Vitro Techniques , Male , Molar, Third/surgery
SELECTION OF CITATIONS
SEARCH DETAIL