Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
2.
Anticancer Res ; 44(5): 1885-1894, 2024 May.
Article in English | MEDLINE | ID: mdl-38677721

ABSTRACT

BACKGROUND/AIM: Breast cancer is a leading cause of cancer-related deaths among women. Down-regulation of the tumor suppressor gene Cyld in breast cancer has been linked to a poor prognosis. This study investigated the role of Cyld in breast cancer using conditional mutant mouse models carrying a Cyld mutation, which inactivates the deubiquitinating activity of its protein product CYLD in mammary epithelial cells. MATERIALS AND METHODS: We examined the potential of CYLD inactivation to induce mammary tumors spontaneously or modify the susceptibility of mice to mammary tumorigenesis by DMBA treatment or ErbB2 over-expression. RESULTS: CYLD inactivation significantly increased susceptibility to breast cancer induced by either DMBA treatment or ErbB2 over-expression. Moreover, while CYLD inactivation alone did not lead to spontaneous mammary tumorigenesis, it did contribute to the formation of multifocal hyperplastic lesions in virgin mice of predominantly FVB/NJ background. CONCLUSION: Our study demonstrates the tumor enhancing potential of CYLD inactivation in mammary tumorigenesis in vivo and establishes novel relevant mouse models that can be exploited for developing prognostic and therapeutic protocols.


Subject(s)
Deubiquitinating Enzyme CYLD , Animals , Female , Mice , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Deubiquitinating Enzyme CYLD/genetics , Deubiquitinating Enzyme CYLD/metabolism , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/genetics , Mutation , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
3.
Endocrine ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507181

ABSTRACT

PURPOSE: The need to investigate the pathogenesis and treatment of nonalcoholic fatty liver disease (NAFLD) has led to the development of multiple mouse models. The aim of this study was to validate a fast food diet (FFD) mouse model that is introduced as being close to the human disease. METHODS: Eight to nine weeks old male and female C57BL/6 J mice were randomly allocated to a FFD group or to a chow diet (CD) group. Every four weeks, mice were weighed, and blood samples were collected for the measurement of glucose, alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides (TGs) and total cholesterol. After 25 weeks, mice were sacrificed, and liver tissue was histologically evaluated. RESULTS: FFD mice gained more weight (p = 0.049) and presented a higher liver-to-body weight ratio (p < 0.001) compared to CD mice. FFD group presented with greater steatosis, hepatocellular ballooning and NAFLD activity score (NAS), whereas lobular inflammation and fibrosis were not significantly different compared to CD. When stratified by sex, NAS was different between FFD and CD groups in both male and female mice. Group by time interaction was significant for weight, ALT and cholesterol, but not for glucose, AST and TGs. CONCLUSION: FFD mice presented with morphologic and biochemical features of NAFLD and with greater hepatic steatosis, hepatocellular ballooning and NAS, but not lobular inflammation and fibrosis, compared to CD mice. These results only partly validate the FFD mouse model for NAFLD, at least for a 6-month feeding period.

4.
Int J Cancer ; 154(6): 1097-1110, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38095490

ABSTRACT

Gastrointestinal bacteria are known to have an impact on local and systemic immunity, and consequently either promote or suppress cancer development. Following the notion that perinatal bacterial exposure might confer immune system competency for life, we investigated whether early-life administration of cholera-toxin (CT), a protein exotoxin of the small intestine pathogenic bacterium Vibrio cholerae, may shape local and systemic immunity to impart a protective effect against tumor development in epithelia distantly located from the gut. For that, newborn mice were orally treated with low non-pathogenic doses of CT and later challenged with the carcinogen 7,12-dimethylbenzanthracene (DMBA), known to cause mainly mammary, but also skin, lung and stomach cancer. Our results revealed that CT suppressed the overall incidence and multiplicity of tumors, with varying efficiencies among cancer types, and promoted survival. Harvesting mouse tissues at an earlier time-point (105 instead of 294 days), showed that CT does not prevent preneoplastic lesions per se but it rather hinders their evolution into tumors. CT pretreatment universally increased apoptosis in the cancer-prone mammary, lung and nonglandular stomach, and altered the expression of several cancer-related molecules. Moreover, CT had a long-term effect on immune system cells and factors, the most prominent being the systemic neutrophil decrease. Finally, CT treatment significantly affected gut bacterial flora composition, leading among others to a major shift from Clostridia to Bacilli class abundance. Overall, these results support the notion that early-life CT consumption is able to affect host's immune, microbiome and gene expression profiles toward the prevention of cancer.


Subject(s)
Neoplasms , Vibrio cholerae , Animals , Mice , Cholera Toxin , Weaning , Carcinogenesis/chemically induced
5.
J Clin Med ; 12(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37685753

ABSTRACT

Wound healing is a complex and meticulously orchestrated process involving multiple phases and cellular interactions. This narrative review explores the intricate mechanisms behind wound healing, emphasizing the significance of cellular processes and molecular factors. The phases of wound healing are discussed, focusing on the roles of immune cells, growth factors, and extracellular matrix components. Cellular shape alterations driven by cytoskeletal modulation and the influence of the 'Formin' protein family are highlighted for their impact on wound healing processes. This review delves into the use of absorbable meshes in wound repair, discussing their categories and applications in different surgical scenarios. Interleukins (IL-2 and IL-6), CD31, CD34, platelet rich plasma (PRP), and adipose tissue-derived mesenchymal stem cells (ADSCs) are discussed in their respective roles in wound healing. The interactions between these factors and their potential synergies with absorbable meshes are explored, shedding light on how these combinations might enhance the healing process. Recent advances and challenges in the field are also presented, including insights into mesh integration, biocompatibility, infection prevention, and postoperative complications. This review underscores the importance of patient-specific factors and surgical techniques in optimizing mesh placement and healing outcomes. As wound healing remains a dynamic field, this narrative review provides a comprehensive overview of the current understanding and potential avenues for future research and clinical applications.

6.
Animals (Basel) ; 13(16)2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37627461

ABSTRACT

In cats, the gastrointestinal tract is one of the regions in which surgical procedures are most frequently performed by veterinary surgeons; therefore, knowledge of the surgical anatomy of the feline gastrointestinal tract is of high importance. The main surgical procedures performed include gastrotomy, gastrectomy, enterotomy, and enterectomy, as well as procedures in the liver and pancreas. There are also anatomical differences between dogs and cats, increasing the need for deep knowledge of the anatomy treated in the different surgical approaches. The aim of the present review is to describe in detail the anatomy of the gastrointestinal tract in cats highlighting the anatomical regions of significant importance in different surgical procedures.

7.
Lab Anim ; 57(1): 9-25, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36117425

ABSTRACT

Telemetric monitoring is used in many scientific fields, such as cardiovascular research, neurology, endocrinology, as well as animal welfare research. Nowadays, implanted electrocardiogram (ECG) radiotelemetry units are the gold standard for monitoring ECG traces, heart rate and heart rate variability in freely moving mice. Telemetry technology can be a valuable tool when studies utilize it adequately, while prioritizing animal welfare. Recently, concerns have been raised in many research fields, including animal research, regarding the reproducibility of research findings, with insufficient reporting being one of the underlying causes.A systematic review was performed by making use of three literature databases, in order to include all publications until 31.12.2019, where the surgical placing of ECG recording telemetry devices in adult mice was involved. Data extracted from the publications included selected items recommended by the ARRIVE guidelines. We focused on aspects related to the refinement of the surgery and experimental conditions that aim to improve animal welfare. In general, the quality of reporting was low in the analyzed 234 publications. Based on our analyses, we assume there has been no improvement in this field's reporting quality since 2010 when the ARRIVE guidelines on reporting were introduced. Additionally, even though expert recommendations on telemetry surgery refinement have been available since many years now, no increase in uptake (or reporting) of these measures prior (e.g., acclimatization), during (e.g., asepsis) or after (e.g., social housing) the surgery could be observed.


Subject(s)
Animal Experimentation , Electrocardiography , Animals , Mice , Reproducibility of Results , Heart Rate , Telemetry
8.
Biomolecules ; 12(11)2022 10 31.
Article in English | MEDLINE | ID: mdl-36358953

ABSTRACT

Oxytocin is a hormone secreted from definite neuroendocrine neurons located in specific nuclei in the hypothalamus (mainly from paraventricular and supraoptic nuclei), and its main known function is the contraction of uterine and/or mammary gland cells responsible for parturition and breastfeeding. Among the actions of the peripherally secreted oxytocin is the prevention of different degenerative disorders. These actions have been proven in cell culture and in animal models or have been tested in humans based on hypotheses from previous studies. This review presents the knowledge gained from the previous studies, displays the results from oxytocin intervention and/or treatment and proposes that the well described actions of oxytocin might be connected to other numerous, diverse actions of the biomolecule.


Subject(s)
Oxytocin , Supraoptic Nucleus , Humans , Animals , Oxytocin/pharmacology , Supraoptic Nucleus/physiology , Hypothalamus , Neurons
9.
Antioxidants (Basel) ; 11(6)2022 May 27.
Article in English | MEDLINE | ID: mdl-35739960

ABSTRACT

Oxaliplatin is a widely used chemotherapeutic agent. Despite its many beneficial aspects in fighting many malignancies, it shares an aversive effect of neuropathy. Many substances have been used to limit this oxaliplatin-driven neuropathy in patients. This study evaluates the neuroprotective role of a grape pomace extract (GPE) into an oxaliplatin induced neuropathy in rats. For this reason, following the delivery of the substance into the animals prior to or simultaneously with oxaliplatin, their performance was evaluated by behavioral tests. Blood tests were also performed for the antioxidant activity of the extract, along with a histological and pathological evaluation of dorsal root ganglion (DRG) cells as the major components of the neuropathy. All behavioral tests were corrected following the use of the grape pomace. Oxidative stressors were also limited with the use of the extract. Additionally, the morphometrical analysis of the DRG cells and their immunohistochemical phenotype revealed the fidelity of the animal model and the changes into the parvalbumin and GFAP concentration indicative of the neuroprotective role of the pomace. In conclusion, the grape pomace extract with its antioxidant properties alleviates the harmful effects of the oxaliplatin induced chronic neuropathy in rats.

10.
Biomolecules ; 12(2)2022 01 27.
Article in English | MEDLINE | ID: mdl-35204719

ABSTRACT

Human mesenchymal stem cells (MSC) are multipotent stem cells, which are isolated from various sources. Currently, there is a worldwide interest for dental MSC to be used against neurodegenerative diseases, since they derive from the neural crest and express embryonic stem cell markers. This fact prompted us to explore their potential for neural trans-differentiation in culture. We employed all-trans-retinoic acid (ATRA) and 2-(3-ethylureido)-6-methylpyridine (UDP-4) to induce neural differentiation of human MSC from the dental apical papilla (SCAP). The SCAP were exposed to either agent separately and assessed for proliferation, viability, morphology, and gene expression of the following neural-specific markers: neuron-specific enolase (ENO2), neurofibromin 1 (NF1), choline acetyltransferase (CHAT), tyrosine hydroxylase (TH), and the vesicular GABA transporter (SLC32A1). They were also assessed for the expression of glial fibrillary acidic protein (GFAP) and neuronal nuclear antigen (NeuN) by immunofluorescence. ATRA or UDP-4 treatment inhibited the cell growth and promoted limited cell death, but to a different extent. The addition of the neuroprotective agent recombinant human erythropoietin-alpha (rhEPO-α) enhanced the UDP-4-inducing capacity for more than three weeks. ATRA or UDP-4 treatment significantly upregulated ENO2 and NF1 expression, indicating neuronal differentiation. Moreover, the ATRA treatment significantly induced the upregulation of the GABAergic-specific SLC32A1, while the UDP-4 treatment led to the significant upregulation of the adrenergic-specific TH. The UDP-4 treatment induced the expression of NeuN and GFAP after four and three weeks, respectively, while the ATRA-treatment did not. Our findings indicate that SCAP can be differentiated into neural-like cells after treatment with ATRA or UDP-4 by exhibiting a disparate pattern of differentiation. Therefore, UDP-4 is suggested here as a new potent neural-differentiation-inducing compound, which, when combined with rhEPO-α, could lay the foundation for robust stem-cell-based therapies of neurodegeneration.


Subject(s)
Mesenchymal Stem Cells , Cell Differentiation , Cells, Cultured , Humans , Pyridines , Tretinoin/metabolism , Tretinoin/pharmacology , Urea/analogs & derivatives , Urea/metabolism
11.
Lab Anim ; 56(3): 247-258, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34541948

ABSTRACT

Mice and rats are among the most used laboratory animals. They share numerous similarities along with differences, some yet unexplored. One of them is the morphometry of their adrenal glands, whose characteristics may be related to differences in energy management, immune response, drug metabolism, behaviour and temperament. The present study tries to fill this knowledge gap with the evaluation and comparison of adrenal gland anatomical/morphometric parameters of mice and rats. In groups of 10 (n = 10) adult, male and female BALB/c mice and Wistar rats, one in every 20 sections transverse to the longitudinal axis of the gland was used for measuring entire gland area, capsule, entire cortex, cortex zones and medulla with the aid of an image analysis system and subjected to statistical analysis. Quotients of the individual areas were calculated and comparison between the resulting ratios was performed. Gland length and volume were also calculated. Statistically significant differences were revealed between the rat female and male cortex area, rat and mouse medulla/cortex, medulla/gland, zona glomerulosa/cortex and cortex/gland ratios, male and female rats' medulla/cortex, medulla/gland, capsule/gland, zona glomerulosa/cortex, zona reticularis/cortex and zona glomerulosa/zona fasciculata ratios, length and volume. The correlation evaluation revealed that in male rats and in female mice the larger medulla area was accompanied by a larger cortex area and vice versa. In general, a larger cortex area was accompanied by larger areas of cortex zones. The collected data and the revealed differences can possibly contribute to the understanding of the physiology of the two species.


Subject(s)
Adrenal Medulla , Adrenal Glands , Animals , Female , Male , Rats , Rats, Wistar
12.
Int J Dev Biol ; 66(1-2-3): 9-22, 2022.
Article in English | MEDLINE | ID: mdl-34549795

ABSTRACT

Although neuron birth and death are two contradictory processes, they serve the same purpose of the formation of the brain. They coexist during brain development, when cytoarchitecture and synaptic contacts are progressively established. It is the highly programmed interplay between these two processes that results in the making of a mature, complex-wired, functional brain. Neurogenesis is the process that begins with the birth of naïve new neurons, which are gradually specified to their prospective cell fate, translocate through migratory streams to the brain area they are destined for, and terminally differentiate into mature neurons that integrate into neuronal networks with sophisticated functions. This is an ongoing process until adulthood, when it mediates brain neuroplasticity. Neuron death is the process through which the fine sculpting and modeling of the brain is achieved. It serves to adjust final neuron numbers, exerting quality control over neurons that birth has generated or overproduced. It additionally corrects early wiring and performs systems matching by negatively selecting neurons that fail to gain neurotransmitter-mediated neuronal activity or receive neurotrophic support for maintenance and function. It is also a means by which organizing centers and transient structures are removed early in morphogenesis. Both processes are evolutionary conserved, genetically programmed and orchestrated by the same signaling factors regulating the cell cycle, neuronal activity/neurotransmitter action and neurotrophic support. This review summarizes and highlights recent knowledge with regard to birth and death of neurons, the two mutually dependent contributors to the formation of the highly evolved mammalian brain.


Subject(s)
Neurogenesis , Neurons , Animals , Brain , Mammals , Neurogenesis/physiology , Neuronal Plasticity
13.
Physiol Behav ; 244: 113645, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34774869

ABSTRACT

Telemetric monitoring is used in many scientific fields, such as cardiovascular research, neurology, endocrinology, animal welfare research and many more. Nowadays, implanted electrocardiogram (ECG) radiotelemetry units are the gold standard for monitoring ECG traces, heart rate and heart rate variability in freely moving mice. This technology can be a valuable tool when studies utilise it adequately, while also prioritizing animal welfare. Recently, concerns about the reproducibility of research findings have been raised in many scientific fields with insufficient reporting being one of the underlying causes. A systematic review was performed in three literature databases to include all published studies until 31.12.2019 using surgery that involves the placing of ECG recording telemetry devices in adult mice. Data extracted from the publications included selected items recommended by the ARRIVE guidelines and SYRCLE`s tool for assessing risk of bias. We focused on aspects related to quality of reporting, risk of bias reduction measures and ECG measurements characteristics. In general, the quality of reporting was low to moderate in the 234 analyzed publications regarding the animal, husbandry, statistics, and risk of bias related items, but good for more specific telemetry study characteristics. Based on our analyses we assume that there is no or only slight improvement in the reporting quality since 2010, when the ARRIVE guidelines were published.


Subject(s)
Electrocardiography , Telemetry , Animal Welfare , Animals , Heart Rate/physiology , Mice , Reproducibility of Results
14.
Cancers (Basel) ; 13(18)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34572766

ABSTRACT

This study aims to investigate the influence of isocitrate dehydrogenase gene family (IDH) mutations, World Health Organization (WHO) grade, and mechanical preconditioning on glioma and adjacent brain elasticity through standard monotonic and repetitive atomic force microscope (AFM) nanoindentation. The elastic modulus was measured ex vivo on fresh tissue specimens acquired during craniotomy from the tumor and the peritumoral white matter of 16 diffuse glioma patients. Linear mixed-effects models examined the impact of tumor traits and preconditioning on tissue elasticity. Tissues from IDH-mutant cases were stiffer than those from IDH-wildtype ones among anaplastic astrocytoma patients (p = 0.0496) but of similar elasticity to IDH-wildtype cases for diffuse astrocytoma patients (p = 0.480). The tumor was found to be non-significantly softer than white matter in anaplastic astrocytomas (p = 0.070), but of similar elasticity to adjacent brain in diffuse astrocytomas (p = 0.492) and glioblastomas (p = 0.593). During repetitive indentation, both tumor (p = 0.002) and white matter (p = 0.003) showed initial stiffening followed by softening. Stiffening was fully reversed in white matter (p = 0.942) and partially reversed in tumor (p = 0.015). Tissue elasticity comprises a phenotypic characteristic closely related to glioma histopathology. Heterogeneity between patients should be further explored.

15.
Mol Genet Metab Rep ; 25: 100683, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33318931

ABSTRACT

The rapid progress achieved in the development of many biopharmaceuticals had a tremendous impact on the therapy of many metabolic/genetic disorders. This type of fruitful approach, called protein replacement therapy (PRT), aimed to either replace the deficient or malfunctional protein in human tissues that act either in plasma membrane or via a specific cell surface receptor. However, there are also many metabolic/genetic disorders attributed to either deficient or malfunctional proteins acting intracellularly. The recent developments of Protein Transduction Domain (PTD) technology offer new opportunities by allowing the intracellular delivery of recombinant proteins of a given therapeutic interest into different subcellular sites and organelles, such as mitochondria and other entities. Towards this pathway, we applied successfully PTD Technology as a protein therapeutic approach, in vitro, in SCO2 deficient primary fibroblasts, derived from patient with mutations in human SCO2 gene, responsible for fatal, infantile cardioencephalomyopathy and cytochrome c oxidase deficiency. In this work, we radiolabeled the recombinant TAT-L-Sco2 fusion protein with technetium-99 m to assess its in vivo biodistribution and fate, by increasing the sensitivity of detection of even low levels of the transduced recombinant protein. The biodistribution pattern of [99mTc]Tc-TAT-L-Sco2 in mice demonstrated fast blood clearance, significant hepatobiliary and renal clearance. In addition, western blot analysis detected the recombinant TAT-L-Sco2 protein in the isolated mitochondria of several mouse tissues, including heart, muscle and brain. These results pave the way to further consider this PTD-mediated Protein Therapy Approach as a potentially alternative treatment of genetic/metabolic disorders.

16.
Neurol Res ; 42(12): 1018-1026, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32705967

ABSTRACT

Brain gliomas represent some of the most aggressive tumors encountered by modern medicine and, despite major efforts to optimize early diagnosis and treatment, the prognosis remains poor. Due to the complex structure of the brain and the unique mechanical properties of the extracellular matrix, gliomas invade and expand into the brain parenchyma, along white matter tracts and within perivascular spaces, usually sparing normal vessels. Different methods have been developed to study the mechanical properties of gliomas in a wide range of scales, from cells and the microscale to tissues and the macroscale. In this review, the current view on glioma mechanics is presented and the methods used to determine glioma mechanical properties are outlined. Their principles and current state of affairs are discussed.


Subject(s)
Brain Neoplasms/pathology , Brain/pathology , Elasticity Imaging Techniques , Glioma/pathology , Elasticity Imaging Techniques/methods , Glioma/diagnosis , Humans , Microscopy, Atomic Force/methods , Prognosis
17.
Cancers (Basel) ; 12(8)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722292

ABSTRACT

Downregulation of the cylindromatosis (CYLD) tumor suppressor has been associated with breast cancer development and progression. Here, we report a critical role for CYLD in maintaining the phenotype of mammary epithelial cells in vitro and in vivo. CYLD downregulation or inactivation induced an epithelial to mesenchymal transition of mammary epithelial cells that was dependent on the concomitant activation of the transcription factors Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) and transforming growth factor beta (TGF)signaling. CYLD inactivation enhanced the nuclear localization of YAP/TAZ and the phosphorylation of Small Mothers Against Decapentaplegic (SMAD)2/3 proteins in confluent cell culture conditions. Consistent with these findings were the hyperplastic alterations of CYLD-deficient mouse mammary epithelia, which were associated with enhanced nuclear expression of the YAP/TAZ transcription factors. Furthermore, in human breast cancer samples, downregulation of CYLD expression correlates with enhanced YAP/TAZ-regulated target gene expression. Our results identify CYLD as a critical regulator of a signaling node that prevents the coordinated activation of YAP/TAZ and the TGF pathway in mammary epithelial cells, in order to maintain their phenotypic identity and homeostasis. Consequently, they provide a novel conceptual framework that supports and explains a causal implication of deficient CYLD expression in aggressive human breast cancers.

18.
J Comp Neurol ; 528(7): 1216-1230, 2020 05.
Article in English | MEDLINE | ID: mdl-31743444

ABSTRACT

Dentate gyrus (DG) of the mammalian hippocampus gives rise to new neurons and astrocytes all through adulthood. Canine hippocampus presents many similarities in fetal development, anatomy, and physiology with human hippocampus, establishing canines as excellent animal models for the study of adult neurogenesis. In the present study, BrdU-dated cells of the structurally and functionally dissociated dorsal (dDG) and ventral (vDG) adult canine DG were comparatively examined over a period of 30 days. Each part's neurogenic potential, radial glia-like neural stem cells (NSCs) proliferation and differentiation, migration, and maturation of their progenies were evaluated at 2, 5, 14, and 30 days post BrdU administration, with the use of selected markers (glial fibrillary acidic protein, doublecortin, calretinin and calbindin). Co-staining of BrdU+ cells with NeuN or S100B permitted the parallel study of the ongoing neurogenesis and gliogenesis. Our findings reveal the comparatively higher populations of residing granule cells, proliferating NSCs and BrdU+ neurons in the dDG, whereas newborn neurons of the vDG showed a prolonged differentiation, migration, and maturation. Newborn astrocytes were found all along the dorso-ventral axis, counting however for only 11% of newborn cell population. Comparative evaluation of adult canine and rat neurogenesis revealed significant differences in the distribution of resident and newborn granule cells along the dorso-ventral axis, division pattern of adult NSCs, maturation time plan of newborn neurons, and ongoing gliogenesis. Concluding, spatial and temporal features of adult canine neurogenesis are similar to that of other gyrencephalic species, including humans, and justify the comparative examination of adult neurogenesis across mammalian species.


Subject(s)
Adult Stem Cells/cytology , Hippocampus/cytology , Neural Stem Cells/cytology , Neurogenesis/physiology , Animals , Astrocytes/cytology , Dogs , Doublecortin Protein , Female , Male
19.
Biomedicine (Taipei) ; 9(2): 8, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31124454

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the potential effect of the methanolic extract of plant Glycyrrhiza glabra roots on bone mineral density and femoral bone strength of ovariectomized rats. METHODS: Thirty 10-month-old Wistar rats were randomly separated into three groups of ten, Control, Ovariectomy and Ovariectomy-plus-Glycyrrhiza in their drinking water. Total and proximal tibial bone mineral density was measured in all groups before ovariectomy (baseline) and after 3 and 6 months post ovariectomy. Three-point-bending of the femurs and uterine weight and histology were examined at the end of the study. RESULTS: No significant difference was noted in bone density percentage change of total tibia from baseline to 3 months between Control and Ovariectomy-plus-Glycyrrhiza groups (+5.31% ± 4.75 and +3.30% ± 6.31 respectively, P = non significant), and of proximal tibia accordingly (+5.58% ± 6.92 and +2.61% ± 13.62, P = non significant) demonstrating a strong osteoprotective effect. There was notable difference in percentage change of total tibia from baseline to 6 months between groups Ovariectomy and Ovariectomy-plus-Glycyrrhiza (-13.03% ± 5.11 and -0.84% ± 7.63 respectively, P < 0.005), and of proximal tibia accordingly (-27.9% ± 3.69 and -0.81% ± 14.85 respectively, P < 0.001), confirming the protective effect of Glycyrrhiza glabra extract in preserving bone density of the Ovariectomy-plus-Glycyrrhiza group. Three-point-bending did not reveal any statistically significant difference between Ovariectomy and Ovariectomy-plus-Glycyrrhiza groups. Uterine weights of the Ovariectomy-plus-Glycyrrhiza group ranged between the other two groups with no statistically significant difference to each. CONCLUSIONS: Glycyrrhiza glabra root extract notably protected tibial bone mineral density loss in Ovariectomy-plus-Glycyrrhiza rats in comparison with ovariectomized rats, but did not improve biomechanical strength.

20.
Nutr Cancer ; 71(3): 491-507, 2019.
Article in English | MEDLINE | ID: mdl-30273051

ABSTRACT

Crocus sativus L., a dietary herb, has been used for various diseases including cancer. This is an in vitro study investigating the antineoplastic effect of the extract of the plant against C6 glioma rat cell line. The mechanism of cellular death and the synergistic effect of the extract with the alkylating agent temozolomide (TMZ) were investigated. Cellular viability was examined in various concentrations of the extract alone or in combination with TMZ. Apoptosis was determined with flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and autophagy by western blotting of the light chain 3 (LC3)-II. Cellular viability was reduced after exposure to the extract with half maximal inhibition concentration at 3 mg/ml. Flow cytometry and TUNEL assay suggested that the extract does not induce apoptosis. Moreover, their combination increased the ratio dead/apoptotic cells 10-fold (P < 0.001). LC3-II protein levels reduced after Crocus extract while this effect was reversed when the calpain inhibitor MDL28170 was added, suggesting a calpain-dependent death possibly through autophagy. We concluded that the extract of Crocus increases dead cell number after 48 h of exposure. Our results suggest that the cell undergoes calpain-dependent programmed cell death while co-exposure to Crocus extract and TMZ enhances the antineoplastic effect of the latter.


Subject(s)
Calpain/physiology , Cell Death/drug effects , Crocus/chemistry , Glioma/pathology , Plant Extracts/pharmacology , Temozolomide/pharmacology , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Calpain/antagonists & inhibitors , Cell Line, Tumor , Dipeptides/pharmacology , Drug Synergism , Glioma/drug therapy , In Situ Nick-End Labeling , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...