Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38399932

ABSTRACT

CO2 capture, applied in CO2 separation from natural gas or in CO2/N2 separation from power plant flue gas streams, is of great importance for technical, economic, and environmental reasons. The latter seems important because CO2, as a greenhouse gas, is considered the main contributor to global warming. Using polymeric membranes for CO2 separation presents several advantages, such as low energy demand, small equipment volume, and the absence of liquid waste. In this study, two ionic liquids (ILs) were used for the preparation of cellulose acetate (CA)-IL blend membranes for potential CO2 capture applications, namely, 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim+][HSO4-]) and choline glycine ([Ch+]Gly-), as they present adequate CO2 dissolution ability. The first IL is commercially available, whereas the latter was synthesized by a novel route. Several composite membranes were prepared through the solvent casting technique and characterized by a variety of methods, including thermogravimetry, calorimetry, FTIR spectroscopy, and X-ray diffraction. The CO2 sorption in the composite membranes was experimentally measured using the mass loss analysis (MLA) technique. The results showed that the ILs strongly interacted with the C=O groups of CA, which exhibited high affinity with CO2. In the case of [Bmim+][HSO4-], a reduction in the available sites that allow strong intermolecular interactions with CO2 resulted in a decrease in CO2 sorption compared to that of pure CA. In the case of [Ch+]Gly-, the reduction was balanced out by the presence of specific groups in the IL, which presented high affinity with CO2. Thus, the CA-[Ch+]Gly- blend membranes exhibited increased CO2 sorption capability, in addition to other advantages such as non-toxicity and low cost.

2.
Nanomaterials (Basel) ; 14(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276741

ABSTRACT

In this study, the mechanical properties and thermal stability of composite polypropylene (PP) drawn fibers with two different organically modified montmorillonites were experimentally investigated and optimized using a response surface methodology. Specifically, the Box-Behnken Design of Experiments method was used in order to investigate the effect of the filler content, the compatibilizer content, and the drawing temperature on the tensile strength and the onset decomposition temperature of the PP composite drawn fibers. The materials were characterized by tensile tests, thermogravimetry, and X-ray diffraction. Two types of composites were investigated with the only difference being the type of filler, namely, Cloisite® 10A or Cloisite® 15A. In both cases, statistically significant models were obtained regarding the effect of design variables on tensile strength, while poor significance was observed for the onset decomposition temperature. Nanocomposite fibers with tensile strength up to 540 MPa were obtained. Among the design variables, the drawing temperature exhibited the most notable effect on tensile strength, while the effect of both clays was not significant.

3.
Molecules ; 28(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38067631

ABSTRACT

The primary physicochemical effect upon exposure to infrared radiation (IR) is the temperature increase of cells. The degradation of proteins via the hydrolysis of peptide bonds is related to cell malfunction. In this work, the degradation of proteins/peptides under the influence of IR radiation is theoretically studied. It is shown that the low value of enthalpy of peptide bond hydrolysis has two consequences: (a) the enthalpy of hydrolysis is sensitive to small variations in the bond strength, and the hydrolysis of weak peptide bonds is exothermic, while the hydrolysis of stronger bonds is endothermic; (b) the increase in temperature (e.g., due to IR exposure) changes the enthalpy of the reaction of some weak peptide bonds from exothermic to endothermic (that is, their hydrolysis will be favored upon further increase in temperature). Simple calculations reveal that the amount of absorbed energy during the overtone and hot band transitions of the H-O-H and C-N stretching vibrations is comparable to the activation energy of the (uncatalyzed) hydrolysis. A critical discussion is provided regarding the influence of different IR wavelengths on peptide bond hydrolysis.


Subject(s)
Peptides , Vibration , Hydrolysis , Thermodynamics , Temperature , Peptides/chemistry
4.
Polymers (Basel) ; 15(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37111990

ABSTRACT

Evaluation and understanding of the thermal behavior of polymers is crucial for many applications, e.g., polymer processing at relatively high temperatures, and for evaluating polymer-polymer miscibility. In this study, the differences in the thermal behavior of poly(vinyl alcohol) (PVA) raw powder and physically crosslinked films were investigated using various methods, such as thermogravimetric analysis (TGA) and derivative TGA (DTGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Various strategies were adopted, e.g., film casting from PVA solutions in H2O and D2O and heating of samples at carefully selected temperatures, in order to provide insights about the structure-properties relationship. It was found that the physically crosslinked PVA film presents an increased number of hydrogen bonds and increased thermal stability/slower decomposition rate compared to the PVA raw powder. This is also depicted in the estimated values of specific heat of thermochemical transition. The first thermochemical transition (glass transition) of PVA film, as for the raw powder, overlaps with mass loss from multiple origins. Evidence for minor decomposition that occurs along with impurities removal is presented. The overlapping of various effects (softening, decomposition, and evaporation of impurities) has led to confusion and apparent consistencies, e.g., from the XRD, it is derived that the film has decreased crystallinity, and apparently this is in agreement with the lower value of heat of fusion. However, the heat of fusion in this particular case has a questionable meaning.

5.
Polymers (Basel) ; 14(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36501449

ABSTRACT

Although thermosets and various biopolymers cannot be softened without being decomposed, the vast majority of thermoplastics are believed to exhibit thermal transitions solely related to physical alterations of their structure-a behavior typical of low molecular weight substances. In this study, Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetry (TGA) were used to study the softening of four common non-hydrogen-bonded thermoplastic polymers (polypropylene, polypropylene-grafted-maleic anhydride, poly(vinyl chloride) and polystyrene) along with a hydrogen-bonded polymer as a reference, namely, poly(vinyl alcohol). It is shown that the softening of these polymers is a thermochemical transition. Based on fundamental concepts of statistical thermodynamics, it is proposed that the thermal transition behavior of all kinds of polymers is qualitatively the same: polymers cannot be softened without being decomposed (in resemblance with their incapability to boil) and the only difference between the various types of polymers is quantitative and lies in the extent of decomposition during softening. Decomposition seems to reach a local maximum during softening; however, it is predicted that polymers constantly decompose even at room temperature and, by heating, (sensible) decomposition is not initiated but simply accelerated. The term "latent decomposition" is proposed to describe this concept.

6.
Molecules ; 27(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36235166

ABSTRACT

The thermodynamic properties of pharmaceuticals are of major importance since they are involved in drug design, processing, optimization and modelling. In this study, a long-standing confusion regarding the thermodynamic properties of flavonoids and similar pharmaceuticals is recognized and clarified. As a case study, the thermal behavior of quercetin is examined with various techniques. It is shown that quercetin does not exhibit glass transition nor a melting point, but on the contrary, it does exhibit various thermochemical transitions (structural relaxation occurring simultaneously with decomposition). Inevitably, the physical meaning of the reported experimental values of the thermodynamic properties, such as the heat of fusion and heat capacity, are questioned. The discussion for this behavior is focused on the weakening of the chemical bonds. The interpretations along with the literature data suggest that the thermochemical transition might be exhibited by various flavonoids and other similar pharmaceuticals, and is related to the difficulty in the prediction/modelling of their melting point.


Subject(s)
Flavonoids , Quercetin , Pharmaceutical Preparations , Thermodynamics
7.
Molecules ; 27(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36234879

ABSTRACT

Silybin is a complex organic molecule with high bioactivity, extracted from the plant Silybum. As a pharmaceutical substance, silybin's bioactivity has drawn considerable attention, while its other properties, e.g., thermodynamic properties and thermal stability, have been less studied. Silybin has been reported to exhibit a melting point, and values for its heat of fusion have been provided. In this work, differential scanning calorimetry, thermogravimetry including derivative thermogravimetry, infrared spectroscopy, and microscopy were used to provide evidence that silybin exhibits a thermochemical transition, i.e., softening occurring simultaneously with decomposition. Data from the available literature in combination with critical discussion of the results in a general framework suggest that thermochemical transition is a broad effect exhibited by various forms of matter (small molecules, macromolecules, natural, synthetic, organic, inorganic). The increased formation of hydrogen bonding contributes to this behavior through a dual influence: (a) inhibition of melting and (b) facilitation of decomposition due to weakening of chemical bonds.


Subject(s)
Flavonoids , Calorimetry, Differential Scanning , Molecular Weight , Pharmaceutical Preparations , Silybin
8.
Polymers (Basel) ; 14(16)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36015691

ABSTRACT

Gallic acid (GA) and quercetin (QU) are two important bioactive molecules with increased biomedical interest. Cellulose acetate (CA) is a polymer derived from cellulose and is used in various applications. In this work, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) were used to study the thermal behavior of electrospun CA membranes loaded with quercetin or gallic acid. It was found that gallic acid and quercetin depress the thermochemical transition (simultaneous softening and decomposition) of CA, in a mechanism similar to that of the glass transition depression of amorphous polymers by plasticizers. The extensive hydrogen bonding, besides the well-known effect of constraining polymer's softening by keeping macromolecules close to each other, has a secondary effect on the thermochemical transition, i.e., it weakens chemical bonds and, inevitably, facilitates decomposition. This second effect of hydrogen bonding can provide an explanation for an unexpected observation of this study: CA membranes loaded with quercetin or gallic acid soften at lower temperatures; however, at the same time, they decompose to a higher extent than pure CA. Besides optimization of CA processing, the fundamental understanding of the thermochemical transition depression could lead to the design of more sustainable processes for biomass recycling and conversion.

9.
Polymers (Basel) ; 14(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35406204

ABSTRACT

A large portion of the produced Polypropylene (PP) is used in the form of fibers. In this industrially oriented study, the development of composite PP drawn fibers was investigated. Two types of fillers were used (ultra-fine talc and single-wall carbon nanotubes). Optimization of the thermal and mechanical properties of the produced composite drawn fibers was performed, based on the Box-Behnken design of experiments method (surface response analysis). The effect of additives, other than the filler, but typical in industrial applications, such as an antioxidant and a common compatibilizer, was investigated. The drawing ratio, the filler, and the compatibilizer or the antioxidant content were selected as design variables, whereas the tensile strength and the onset decomposition temperature were set as response variables. Fibers with very high tensile strength (up to 806 MPa) were obtained. The results revealed that the maximization of both the tensile strength and the thermal stability was not feasible for composites with talc due to multiple interactions among the used additives (antioxidant, compatibilizer, and filler). Additionally, it was found that the addition of talc in the studied particle size improved the mechanical strength of fibers only if low drawing ratios were used. On the other hand, the optimization targeting maximization of both tensile strength and thermal stability was feasible in the case of SWCNT composite fibers. It was found that the addition of carbon nanotubes improved the tensile strength; however, such improvement was rather small compared with the tremendous increase of tensile strength due to drawing.

10.
Polymers (Basel) ; 14(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35267749

ABSTRACT

The thermal and mechanical properties of polypropylene-wollastonite composite drawn fibers were optimized via experiments selected with the Box-Behnken approach. The drawing ratio, the filler and the compatibilizer content were chosen as design variables, while the tensile strength, the melting enthalpy and the onset decomposition temperature were set as response variables. Drawn fibers with tensile strength up to 535 MPa were obtained. Results revealed that the drawing ratio is the most important factor for the enhancement of tensile strength, followed by the filler content. All the design variables slightly affected the melting temperature and the crystallinity of the matrix. Also, it was found that the addition of polypropylene grafted with maleic anhydride as compatibilizer has a multiple effect on the final properties, i.e., it induces the dispersion of both the antioxidant and the filler, tending to increase thermal stability and tensile strength, while, on the same time, deteriorates mechanical and thermal properties due to its lower molecular weight and thermal stability. Such behavior does not allow for simultaneous maximization of thermal stability and tensile strength. Optimization based on a compromise, i.e., targeting maximization of tensile strength and onset decomposition temperature higher than 300 °C, yields high desirability values and predictions in excellent agreement with verification experiments.

11.
J Funct Biomater ; 13(1)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35225984

ABSTRACT

Staphylococcus aureus is one of the major pathogens causing and spreading hospital acquired infections. Since it is highly resistant to new generation antibiotics, novel strategies have to be developed such as the construction of biofunctionalized non-adherent surfaces that will prevent its tethering and subsequent spread in the hospital environment. In this frame, the domain D of protein A (SpAD) of S. aureus has been immobilized onto cellulose acetate scaffolds by using the streptavidin/biotin interaction, in order to study its interaction with the A1 domain of von Willebrand factor (vWF A1), a protein essential for hemostasis, found in human plasma. Subsequently, the biofunctionalized cellulose acetate scaffolds were incubated with S. aureus in the presence and absence of vWF A1 at different time periods and their potential to inhibit S. aureus growth was studied with scanning electron microscopy (SEM). The SpAD biofunctionalized scaffolds perceptibly ameliorated the non-adherent properties of the material, and in particular, the interaction between SpAD and vWF A1 effectively inhibited the growth of S. aureus. Thus, the exhibition of significant non-adherent properties of scaffolds addresses their potential use for covering medical equipment, implants, and stents.

12.
Polymers (Basel) ; 14(2)2022 Jan 09.
Article in English | MEDLINE | ID: mdl-35054667

ABSTRACT

Isotactic polypropylene (PP) composite drawn fibers were prepared using melt extrusion and high-temperature solid-state drawing at a draw ratio of 7. Five different fillers were used as reinforcement agents (microtalc, ultrafine talc, wollastonite, attapulgite and single-wall carbon nanotubes). In all the prepared samples, antioxidant was added, while all samples were prepared with and without using PP grafted with maleic anhydride as compatibilizer. Material characterization was performed by tensile tests, differential scanning calorimetry, thermogravimetric analysis and Fourier transform infrared spectroscopy. Attapulgite composite fibers exhibited poor results in terms of tensile strength and thermal stability. The use of ultrafine talc particles yields better results, in terms of thermal stability and tensile strength, compared to microtalc. Better results were observed using needle-like fillers, such as wollastonite and single-wall carbon nanotubes, since, as was previously observed, high aspect ratio particles tend to align during the drawing process and, thus, contribute to a more symmetrical distribution of stresses. Competitive and synergistic effects were recognized to occur among the additives and fillers, such as the antioxidant effect being enhanced by the addition of the compatibilizer, while the antioxidant itself acts as a compatibilizing agent.

13.
Carbohydr Polym ; 259: 117754, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33674008

ABSTRACT

Cellulose acetate butyrate (CAB) belongs to cellulose esters, an important category of polymers, that are derived from the most abundant organic substance on earth (cellulose). As most cellulose esters, CAB is believed to exhibit a melting point. In this study, carefully selected experiments were performed, in order to test if the endothermic peak, observed in the Differential Scanning Calorimetry (DSC) scan of CAB, is a melting point. It was found that it is not a melting peak but a chemically induced transition (appearing as glass transition) occurring simultaneously with mass loss (decomposition and vaporization). For this phenomenon, the term "glass chemical transition" is proposed. Various literature misinterpretations/confusions are clarified and the potential consequences of this discovery are shortly discussed. Based on literature data and the presented results, it seems almost certain that secondary cellulose esters exhibit this behavior. It is likely, that other polymers, also exhibit this peculiar thermal transition.

14.
Environ Technol ; 38(9): 1120-1126, 2017 May.
Article in English | MEDLINE | ID: mdl-27494440

ABSTRACT

The aim of this work was the examination of the treatment potential of molasses wastewater, by the utilization of activated sludge and microalgae. The systems used included a sequencing batch bioreactor and a similar photo-bioreactor, favoring microalgae growth. The microalgae treatment of molasses wastewater mixture resulted in a considerable reduction in the total nitrogen content. A reduction in the ammonium and nitrate content was observed in the photo-bioreactor, while the effluent's total nitrogen consisted mainly of 50% organic nitrogen. The transformation of the nitrogen forms in the photo-bioreactor was attributed to microalgae activity, resulting in the production of a better quality effluent. Lower COD removal was observed for the photo-bioreactor than the control, which however increased, by the replacement of the anoxic phase by a long aeration period. The mechanism of nitrogen removal included both the denitrification process during the anoxic stage and the microalgae activities, as the replacement of the anoxic stage resulted in low total nitrogen removal capacities. A decrease in the photobioreactor performance was observed after 35 days of operation due to biofilm formation on the light tube surface, while the operation at higher temperature accelerated microalgae growth, resulting thus in the early failure of the photoreactor.


Subject(s)
Environmental Restoration and Remediation/methods , Microalgae/metabolism , Molasses/analysis , Sewage/analysis , Wastewater/analysis , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Bioreactors , Nitrogen Compounds/metabolism , Organic Chemicals/metabolism
15.
J Environ Manage ; 183: 126-132, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27589919

ABSTRACT

The treatment of molasses wastewater, by a combined microalgae-activated sludge process, for the simultaneous organics and total nitrogen reduction, was examined. Further enhancement of the performance of the combined process was accomplished, by means of biofilm carriers or electrocoagulation. A LED light tube was immersed into the reactor tank aiming to enhance the growth of photosynthetic microalgae, while in a similar unit, biofilm carriers were added to the system, representing a moving bed bioreactor. Exposure of the activated sludge biocommunity to light source, resulted in the growth of microalgae and photoreactors exhibited higher removal rates of total nitrogen and nitrates. However, operation at longer times resulted in low effluent quality due to the presence of microalgae cells as a result of high growth rates, and potential light shading effect. Nevertheless, the moving bed system was more beneficial than the single photoreactor, as biofilm carriers provided a self cleaning capacity of the light source, reducing the effect of microalgae deposition. Advanced treatment of the biological effluents, by electrocoagulation, increased even more the process efficiency: the combined photobioreactor and electrocoagulation process resulted in about 78% COD removal and more than 35% total nitrogen removal in the effluent, where nitrates represented almost the single form of total nitrogen.


Subject(s)
Microalgae , Waste Disposal, Fluid/methods , Biofilms , Biological Oxygen Demand Analysis , Electrocoagulation , Equipment Design , Microalgae/growth & development , Molasses , Nitrates/chemistry , Nitrates/isolation & purification , Nitrates/metabolism , Nitrogen/metabolism , Photobioreactors , Sewage , Waste Disposal, Fluid/instrumentation , Wastewater
16.
Water Sci Technol ; 73(10): 2436-45, 2016.
Article in English | MEDLINE | ID: mdl-27191565

ABSTRACT

The ability of selected manganese peroxidase (MnP) yeast strains, isolated from the mixed liquor of an activated sludge bioreactor treating melanoidins wastewater, was investigated in this work, aiming to examine the degradation potential of melanoidins, in the presence or absence of nutrients. Ten yeast strains were initially isolated from the mixed liquor; four yeast strains (Y1, Y2, Y3 and Y4) were selected for further studies, based on their tolerance towards synthetic melanoidins (SMs) degradation and MnP activity onto solid agar medium. The Y1 strain exhibited almost 98% homology to Candida glabrata yeast, based on 28S rRNA identification studies. During experiments carried out using SM at 30 °C, the four isolated yeast cultures showed a noticeable organic matter reduction and decolorization capacity reaching up to 70% within 2-5 days. However, the corresponding yeast cultures grown in glucose peptone yeast extract medium using real melanoidin wastewater at 30°C showed lower organic matter and color removal capacity, reaching about 60% within 2-5 days. Nevertheless, it was found that the removal of real and synthetic melanoidins could be carried out by these strains under non-aseptic conditions, without requiring further addition of nutrients.


Subject(s)
Bioreactors , Peroxidases/metabolism , Polymers/metabolism , Yeasts/metabolism , Anaerobiosis , Polymers/chemistry , Sewage , Waste Disposal, Fluid/methods , Wastewater , Water Pollutants, Chemical/chemistry
17.
J Sci Food Agric ; 92(4): 814-20, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22002497

ABSTRACT

BACKGROUND: The essential oil of oregano is composed of numerous substances that exhibit various properties (e.g. antioxidants). The innovative and promising method of extraction with sub-critical water (subcH2O) has been applied to the Greek oregano. RESULTS: The sub-critical water extraction experiments were performed at various conditions of pressure, temperature and water flow rate. Extracts collected at different extraction times were examined by gas chromatography. The oil has been processed by super-critical carbon dioxide (scCO2) followed by steam distillation or sub-critical water extraction. The conventional method of steam distillation was also performed. The main component of the plant is carvacrol. The favourable oxygenated compounds (carvacrol, thymol, borneol and thymoquinone) have been extracted preferentially and faster with sub-critical water. This method was selective for thymoquinone, which was not present in the oil from steam distillation. The oil yield obtained was much higher in the case of sub-critical water extraction compared to the one of super-critical carbon dioxide. The latter method resulted in oil with the highest concentration in carvacrol. CONCLUSION: Compared to the classical steam distillation, the sub-critical water extraction is superior in terms of higher yields, less energy consumption (as it was a faster process), and better composition/selectivity of the extracts controlled by the extraction parameters.


Subject(s)
Benzoquinones/analysis , Flowers/chemistry , Monoterpenes/analysis , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Origanum/chemistry , Plant Leaves/chemistry , Benzoquinones/isolation & purification , Camphanes/analysis , Camphanes/isolation & purification , Cymenes , Flame Ionization , Greece , Hot Temperature , Monoterpenes/isolation & purification , Pressure , Quality Control , Solvents/chemistry , Thymol/analysis , Thymol/isolation & purification , Time Factors , Water/chemistry
18.
Phys Chem Chem Phys ; 12(18): 4843-51, 2010 May 14.
Article in English | MEDLINE | ID: mdl-20428567

ABSTRACT

A non-electrolyte equation-of-state model was used to describe the phase behavior of binary systems containing alkyl-methyimidazolium bis(trifluoromethyl-sulfonyl)imide ionic liquids. A methodology is suggested for modeling this phase behavior by using the Non-Random Hydrogen-Bonding (NRHB) model. According to this methodology, the scaling constants of the ionic liquid are calculated using limited available experimental data on liquid densities and Hansen's solubility parameters, while all electrostatic interactions (polar, hydrogen bonding and ionic) are treated as strong specific interactions. Using the aforementioned methodology, the model is applied to describe the vapor-liquid and the liquid-liquid equilibria in mixtures of ionic liquids with various polar or quadrupolar solvents at low and high pressures. In all cases, one temperature-independent binary interaction parameter was used. Accurate correlations were obtained for the majority of the systems, both, for vapor-liquid and liquid-liquid equilibria.

SELECTION OF CITATIONS
SEARCH DETAIL
...