Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Front Plant Sci ; 8: 1539, 2017.
Article in English | MEDLINE | ID: mdl-28936216

ABSTRACT

Jatropha curcas L. (Jatropha), a shrub species of the family Euphorbiaceae, has been recognized as a promising biofuel plant for reducing greenhouse gas emissions. However, recent attempts at commercial cultivation in Africa and Asia have failed because of low productivity. It is important to elucidate genetic diversity and relationship in worldwide Jatropha genetic resources for breeding of better commercial cultivars. Here, genetic diversity was analyzed by using 246 accessions from Mesoamerica, Africa and Asia, based on 59 simple sequence repeat markers and eight retrotransposon-based insertion polymorphism markers. We found that central Chiapas of Mexico possesses the most diverse genetic resources, and the Chiapas Central Depression could be the center of origin. We identified three genetic groups in Mesoamerica, whose distribution revealed a distinct geographic cline. One of them consists mainly of accessions from central Chiapas. This suggests that it represents the original genetic group. We found two Veracruz accessions in another group, whose ancestors might be shipped from Port of Veracruz to the Old World, to be the source of all African and Asian Jatropha. Our results suggest the human selection that caused low productivity in Africa and Asia, and also breeding strategies to improve African and Asian Jatropha. Cultivars improved in the productivity will contribute to expand mass commercial cultivation of Jatropha in Africa and Asia to increase biofuel production, and finally will support in the battle against the climate change.

2.
Biotechnol Biofuels ; 6(1): 129, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-24020916

ABSTRACT

BACKGROUND: Recently, Jatropha curcas L. has attracted worldwide attention for its potential as a source of biodiesel. However, most DNA markers have demonstrated high levels of genetic similarity among and within jatropha populations around the globe. Despite promising features of copia-type retrotransposons as ideal genetic tools for gene tagging, mutagenesis, and marker-assisted selection, they have not been characterized in the jatropha genome yet. Here, we examined the diversity, evolution, and genome-wide organization of copia-type retrotransposons in the Asian, African, and Mesoamerican accessions of jatropha, then introduced a retrotransposon-based marker for this biofuel crop. RESULTS: In total, 157 PCR fragments that were amplified using the degenerate primers for the reverse transcriptase (RT) domain of copia-type retroelements were sequenced and aligned to construct the neighbor-joining tree. Phylogenetic analysis demonstrated that isolated copia RT sequences were classified into ten families, which were then grouped into three lineages. An in-depth study of the jatropha genome for the RT sequences of each family led to the characterization of full consensus sequences of the jatropha copia-type families. Estimated copy numbers of target sequences were largely different among families, as was presence of genes within 5 kb flanking regions for each family. Five copia-type families were as appealing candidates for the development of DNA marker systems. A candidate marker from family Jc7 was particularly capable of detecting genetic variation among different jatropha accessions. Fluorescence in situ hybridization (FISH) to metaphase chromosomes reveals that copia-type retrotransposons are scattered across chromosomes mainly located in the distal part regions. CONCLUSION: This is the first report on genome-wide analysis and the cytogenetic mapping of copia-type retrotransposons of jatropha, leading to the discovery of families bearing high potential as DNA markers. Distinct dynamics of individual copia-type families, feasibility of a retrotransposon-based insertion polymorphism marker system in examining genetic variability, and approaches for the development of breeding strategies in jatropha using copia-type retrotransposons are discussed.

3.
DNA Res ; 18(1): 65-76, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21149391

ABSTRACT

The whole genome of Jatropha curcas was sequenced, using a combination of the conventional Sanger method and new-generation multiplex sequencing methods. Total length of the non-redundant sequences thus obtained was 285 858 490 bp consisting of 120 586 contigs and 29 831 singlets. They accounted for ~95% of the gene-containing regions with the average G + C content was 34.3%. A total of 40 929 complete and partial structures of protein encoding genes have been deduced. Comparison with genes of other plant species indicated that 1529 (4%) of the putative protein-encoding genes are specific to the Euphorbiaceae family. A high degree of microsynteny was observed with the genome of castor bean and, to a lesser extent, with those of soybean and Arabidopsis thaliana. In parallel with genome sequencing, cDNAs derived from leaf and callus tissues were subjected to pyrosequencing, and a total of 21 225 unigene data have been generated. Polymorphism analysis using microsatellite markers developed from the genomic sequence data obtained was performed with 12 J. curcas lines collected from various parts of the world to estimate their genetic diversity. The genomic sequence and accompanying information presented here are expected to serve as valuable resources for the acceleration of fundamental and applied research with J. curcas, especially in the fields of environment-related research such as biofuel production. Further information on the genomic sequences and DNA markers is available at http://www.kazusa.or.jp/jatropha/.


Subject(s)
Genome, Plant , Jatropha/genetics , Plant Proteins/genetics , Sequence Analysis, DNA
4.
Genes Genet Syst ; 83(3): 227-36, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18670134

ABSTRACT

A database search of the sequences flanking a member of rice retrotransposon RIRE7 revealed that a 298-bp sequence in the region downstream of the member is a repetitive sequence interspersed in the genome of Oryza sativa cv. Nipponbare. Most of the repetitive sequences were flanked by a direct repeat of a target-site sequence, about 14 bp in length. The consensus sequence, 293 bp in length, had no regions encoding any proteins but had sequence motifs of an internal promoter of RNA polymerase III. These indicate that the sequence is a retroposon SINE, designated OsSN1 (Oryza sativa SINE1). OsSN1 is a new rice SINE, because it has no homology with any of the three p-SINE families previously identified from rice, and because it has a stretch of A at the 3' end, unlike p-SINE and any other Gramineae SINEs which have a stretch of T at the 3' end. The Nipponbare genome was found to have many members related to OsSN1, forming two additional new SINE families (designated OsSN2 and OsSN3). OsSN2 and OsSN3 are highly homologous to the 3' and 5' regions of OsSN1, respectively. This suggests that OsSN1 has a mosaic structure, which is generated by sequence exchange (or shuffling) between ancestral OsSN2 and OsSN3. Despite the absence of homology in the 3' regions between OsSN1 (or OsSN2) and OsSN3, a sequence, 5'-TTCTC-3', is commonly present in the region preceding the A stretch at the 3' end. This sequence together with the A stretch and a stem-loop structure found in the region near the A stretch are assumed to be important for retroposition. OsSN members were present in strains of Oryza species, as were p-SINE members. Some of the members showed insertion polymorphism at the respective loci among the rice strains. p-SINE had such polymorphic members, which are useful for classification and phylogenetic analysis of various strains of Oryza species. The polymorphic members of OsSN were more frequently found than those of p-SINE, and therefore, such members are likely to be useful for extensive taxonomic and phylogenetic studies on various rice strains.


Subject(s)
Oryza/genetics , Poly A/analysis , Short Interspersed Nucleotide Elements , 3' Flanking Region , Base Sequence , Consensus Sequence , DNA, Plant/chemistry , Genome, Plant , Molecular Sequence Data , Phylogeny , Polymorphism, Genetic , RNA, Plant/chemistry , Sequence Alignment , Sequence Deletion
5.
Plant J ; 56(2): 274-286, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18564381

ABSTRACT

Based on the nucleotide sequence of QDE-3 in Neurospora crassa, which is involved in RNA silencing, rice (Oryza sativa) mutant lines disrupted by the insertion of the rice retrotransposon Tos17 were selected. Homozygous individuals from the M(1) and M(2) generations were screened and used for further analyses. The expression of the gene was not detected in leaves or calli of the mutant lines, in contrast to the wild type (WT). Induction of RNA silencing by particle bombardment was performed to investigate any effects of the OsRecQ1 gene on RNA silencing with silencing inducers of the GFP (green fluorescence protein)/GUS (beta-glucuronidase) gene in the mutant lines. The results showed that OsRecQ1 is required for RNA silencing induced by particle bombardment for inverted-repeat DNA, but not for double-stranded RNA (dsRNA). The levels of transcripts from inverted-repeat DNA were much lower in the mutant lines than those in the WT. Furthermore, no effects were observed in the accumulation of endogenous microRNAs (miR171 and miR156) and the production of the short interspersed nuclear element retroelement by small interfering RNA. On the basis of these results, we propose that OsRecQ1 may participate in the process that allows inverted repeat DNA to be transcribed into dsRNA, which can trigger RNA silencing.


Subject(s)
Oryza/genetics , RNA Interference , RNA, Double-Stranded/genetics , Repetitive Sequences, Nucleic Acid/genetics , Amino Acid Sequence , Cells, Cultured , DNA Helicases/genetics , Fungal Proteins/genetics , Gene Expression Regulation, Plant , Genes, Plant , Genes, Reporter , Green Fluorescent Proteins , Molecular Sequence Data , Mutagenesis, Insertional , Plant Epidermis/genetics , Plants, Genetically Modified/genetics , Plasmids , RNA, Plant/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Short Interspersed Nucleotide Elements
6.
Genes Genet Syst ; 82(3): 217-29, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17660692

ABSTRACT

Oryza rufipogon, the progenitor of the cultivated rice species Oryza sativa, is known by its wide intraspecific variation. In this study, we performed phylogenetic analyses of O. rufipogon strains and their relationships to O. sativa strains by using 26 newly identified p-SINE1 members from O. rufipogon strains, in addition to 23 members previously identified from O. sativa strains. A total of 103 strains of O. rufipogon and O. sativa were examined for the presence and absence of each of the p-SINE1 members at respective loci by PCR with a pair of primers that hybridize to the regions flanking each p-SINE1 member. A phylogenetic tree constructed on the basis of the insertion polymorphism of p-SINE1 members showed that O. rufipogon and O. sativa strains are classified into three groups. The first group consisted of O. rufipogon perennial strains mostly from China and O. sativa ssp. japonica strains, which included javanica strains forming a distinct subgroup. The second group consisted of almost all the O. rufipogon annual strains, a few O. rufipogon perennial strains and O. sativa ssp. indica strains. These groupings, in addition to other results, support the previous notion that annual O. rufipogon originated in the O. rufipogon perennial population, and that O. sativa originated polyphyletically in the O. rufipogon populations. The third group consisted of the other perennial strains and intermediate-type strains of O. rufipogon, in which the intermediate-type strains are most closely related to a hypothetical ancestor with no p-SINE1 members at the respective loci and to those belonging to the other rice species with the AA genome. This suggests that O. rufipogon perennial strains are likely to have originated from the O. rufipogon intermediate-ecotype population.


Subject(s)
Oryza/genetics , Phylogeny , Polymorphism, Genetic , Short Interspersed Nucleotide Elements/genetics , Base Sequence , Molecular Sequence Data , Oryza/classification
7.
Genes Genet Syst ; 80(3): 161-71, 2005 Jun.
Article in English | MEDLINE | ID: mdl-16172529

ABSTRACT

p-SINE1 was the first plant SINE element identified in the Waxy gene in Oryza sativa, and since then a large number of p-SINE1-family members have been identified from rice species with the AA or non-AA genome. In this paper, we report two new rice SINE elements, designated p-SINE2 and p-SINE3, which form distinct families from that of p-SINE1. Each of the two new elements is significantly homologous to p-SINE1 in their 5'-end regions with that of the polymerase III promoter (A box and B box), but not significantly homologous in the 3'-end regions, although they all have a T-rich tail at the 3' terminus. Despite the three elements sharing minimal homology in their 3'-end regions, the deduced RNA secondary structures of p-SINE1, p-SINE2 and p-SINE3 were found to be similar to one another, such that a stem-loop structure seen in the 3'-end region of each element is well conserved, suggesting that the structure has an important role on the p-SINE retroposition. These findings suggest that the three p-SINE elements originated from a common ancestor. Similar to members of the p-SINE1 family, the members of p-SINE2 or p-SINE3 are almost randomly dispersed in each of the 12 rice chromosomes, but appear to be preferentially inserted into gene-rich regions. The p-SINE2 members were present at respective loci not only in the strains of the species with the AA genome in the O. sativa complex, but also in those of other species with the BB, CC, DD, or EE genome in the O. officinalis complex. The p-SINE3 members were, however, only present in strains of species in the O. sativa complex. These findings suggest that p-SINE2 originated in an ancestral species with the AA, BB, CC, DD and EE genomes, like p-SINE1, whereas p-SINE3 originated in an ancestral strain of the species with the AA genome. The nucleotide sequences of p-SINE1 members are more divergent than those of p-SINE2 or p-SINE3, indicating that p-SINE1 is likely to be older than p-SINE2 and p-SINE3. This suggests that p-SINE2 and p-SINE3 have been derived from p-SINE1.


Subject(s)
Oryza/genetics , Phylogeny , Short Interspersed Nucleotide Elements/genetics , Base Sequence , Chromosome Mapping , Cluster Analysis , Computational Biology , Japan , Molecular Sequence Data , Sequence Analysis, DNA , Sequence Homology , Species Specificity
8.
Plant Physiol Biochem ; 43(7): 669-79, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16087344

ABSTRACT

The rice sucrose non-fermenting-1 related protein kinase 1 (SnRK1) family consists of three genes, which were named OSK1, OSK24 and OSK35. In order to elucidate the distinct functions of OSK genes, we identified precise regions for their expression by the promoter: GUS expression analyses as well as in situ mRNA localization experiments. At first, we isolated genomic clones corresponding to each member of OSKs in order to obtain the promoter sequences. All OSK genes house 11 exons and 10 introns and the positions of introns within the coding regions are fully conserved in all these genes. Histochemical analyses using OSK promoter: beta-glucronidase (OSKP:GUS) reporter genes showed that expression patterns of OSK1P:GUS and OSK24P:GUS were quite different in the developing caryopsis. The expression of OSK1P:GUS was nearly restricted in the vascular tissues during the caryopsis development. In contrast, the OSK24P:GUS expression was detected in the pericarp at the early stage with a shift to the endosperm as the endosperm cells were formed, and GUS staining was confined to both aleurone layer and endosperm cells around 15 days after flowering, when cell division of cellular endosperm were almost finished. The shifting pattern of the OSK24 expression was correlated with the appearance of starch granules in each tissue. Similar correlation between OSK24 expression and emergence of starch granules was also observed at another temporal sink organ, the basal part of leaf sheath. These results suggest that OSK24 (rice SnRK1b) most probably have a special role in carbohydrate metabolism of the sink organs.


Subject(s)
Oryza/genetics , Protein Serine-Threonine Kinases/genetics , Chromosome Mapping , DNA Primers , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Reporter , Genomic Library , Oryza/enzymology , Oryza/growth & development , Plant Proteins/genetics , RNA, Messenger/genetics , RNA, Plant/genetics , Recombinant Fusion Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction
9.
Plant Cell Physiol ; 44(8): 811-9, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12941873

ABSTRACT

The Arabidopsis CURLY LEAF (CLF) gene is required to repress transcription of the class C gene AGAMOUS (AG) in whorls 1 and 2 of flowers and also in vegetative organs. CLF encodes a protein with homology to the product of the Drosophila Polycomb-group gene Enhancer of zeste [E(z)], which is involved in embyogenesis. In this study, we isolated three petunia CLF-like genes (PhCLF1, PhCLF2 and PhCLF3) based on the sequence homology between CLF and E(Z). Sequence analysis suggests that PhCLF1 and PhCLF2 are orthologs of CLF, whereas PhCLF3 is an ortholog of the Arabidopsis gene EZA1. We identified several conserved domains among products of PhCLF genes and related genes. PhCLF1 and PhCLF2 were expressed in all floral organs and leaves. The PhCLF1 transcripts were accumulated especially in corolla limbs, and contained several alternatively spliced RNA species. PhCLF1 and PhCLF2 do not appear to be the BLIND gene, which is required to repress transcription of the petunia class C gene, but their expression was affected by the homeotic conversion of organs in the blind flower. Our findings show that expression of PhCLF1 is regulated differently from that of PhCLF2, and suggest that the two petunia CLF orthologs function differently from each other.


Subject(s)
Genes, Plant , Homeodomain Proteins/genetics , Petunia/genetics , Plant Proteins/genetics , Alternative Splicing , Amino Acid Sequence , Conserved Sequence , Gene Expression Profiling , Gene Expression Regulation, Plant , Molecular Sequence Data , Mutation , Protein Structure, Tertiary , RNA, Messenger/metabolism , RNA, Plant/metabolism , Sequence Homology, Amino Acid
10.
Mol Biol Evol ; 20(1): 67-75, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12519908

ABSTRACT

The wild rice species Oryza rufipogon with wide intraspecific variation is thought to be the progenitor of the cultivated rice species Oryza sativa with two ecotypes, japonica and indica. To determine the origin of cultivated rice, subfamily members of the rice retroposon p-SINE1, which show insertion polymorphism in the O. sativa -O. rufipogon population, were identified and used to "bar code" each of 101 cultivated and wild rice strains based on the presence or absence of the p-SINE1 members at the respective loci. A phylogenetic tree constructed based on the bar codes given to the rice strains showed that O. sativa strains were classified into two groups corresponding to japonica and indica, whereas O. rufipogon strains were in four groups, in which annual O. rufipogon strains formed a single group, differing from the perennial O. rufipogon strains of the other three groups. Japonica strains were closely related to the O. rufipogon perennial strains of one group, and the indica strains were closely related to the O. rufipogon annual strains, indicating that O. sativa has been derived polyphyletically from O. rufipogon. The subfamily members of p-SINE1 constitute a powerful tool for studying the classification and relationship of rice strains, even when one has limited knowledge of morphology, taxonomy, physiology, and biochemistry of rice strains.


Subject(s)
Oryza/genetics , Short Interspersed Nucleotide Elements/genetics , Animals , Base Sequence , Crops, Agricultural , Genes, Plant , Genome , Humans , Molecular Sequence Data , Oryza/classification , Phylogeny , Polymorphism, Genetic , Sequence Alignment
11.
Plant J ; 32(5): 809-18, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12472695

ABSTRACT

Most Arabidopsis long interspersed elements (LINEs, called ATLNs) have two open reading frames, orf1 and orf2. In the 5' untranslated regions (UTRs) located upstream of orf1, the most proximal segments of tens of base pairs long are not homologous even in two ATLN members with almost identical sequences. In this study, we first show that RT-PCR products from ATLN39, a member of ATLN, can be detected only in total RNA from the hypomethylation mutant ddm1 or from suspension-cultured cells treated with a DNA methylation inhibitor 5-azacytidine, indicating that the expression of ATLN39 is negatively regulated by DNA methylation. We then show that orf1 fused in frame with the luciferase (luc) gene is expressed in suspension-cultured cells of A. thaliana when the 5' UTR is present in the region upstream of orf1. Analysis of deletion in the 5' UTR revealed that the 5' UTR has two promoters, designated here as P1 and P2. Analysis of transcripts by 5' RACE showed that their 5' ends were located at sites immediately upstream of the P1 region or at sites downstream of the P2 region. This observation and the fact that the P1 region contains no TATA sequence indicate that P1 is an internal promoter that initiates transcription from sites upstream of the promoter. A sequence containing GGCGA with a CpG methylatable site is conserved in the P1 regions in members closely related to ATLN39. The P2 region, however, contains the TATA sequence as well as another sequence with a CpG site. The TATA sequence is conserved in members closely related to ATLN39 but not in the other ATLN members, suggesting that P2 is the promoter uniquely present in the ATLN39-related members. Transcripts from promoter P1 can be used as templates to give new copies proficient in retroposition, but those from promoter P2 cannot because of the lack of the proximal half region of the 5' UTR sequence. Transcripts from promoter P2, as well as those from promoter P1 can, however, be used for the production of a sufficient amount of proteins for retroposition. Only a short sequence of the non-homologous region is present at the 5' ends of transcripts from promoter P1, thus suggesting that the non-homologous regions seen in the most proximal regions in ATLN elements are not generated in transcription.


Subject(s)
Arabidopsis/genetics , Gene Expression Regulation, Plant , Long Interspersed Nucleotide Elements/genetics , Promoter Regions, Genetic/genetics , 5' Untranslated Regions/genetics , Base Sequence , DNA Methylation , Molecular Sequence Data , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Sequence Homology, Nucleic Acid , Transcription, Genetic/genetics
12.
Genes Genet Syst ; 77(5): 323-34, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12441643

ABSTRACT

Previous studies based on morphological and molecular markers indicated that there are two cultivated and five wild rice species within the Oryza genus with the AA genome. In the cultivated rice species, Oryza sativa, a retroposon named p-SINE1 has been identified. Some of the p-SINE1 members characterized previously showed interspecific insertion polymorphisms in the species with the AA genome. In this study, we identified new p-SINE1 members showing interspecific insertion polymorphisms from representative strains of four wild rice species with the AA genome: O. barthii, O. glumaepatula, O. longistaminata, and O. meridionalis. Some of these members were present only in strains of one species, whereas the others were present in strains of two or more species. The p-SINE1 insertion patterns in the strains of the Asian and African cultivated rice species O. sativa and O. glaberrima were very similar to those of the Asian and African wild rice species O. rufipogon and O. barthii, respectively. This is consistent with the previous hypothesis that O. sativa and O. glaberrima are derived from specific wild rice species. Phylogenetic analysis based on the p-SINE1 insertion patterns showed that the strains of each of the five wild rice species formed a cluster. The strains of O. longistaminata appear to be distantly related to those of O. meridionalis. The strains of these two species appear to be distantly related to those of three other species, O. rufipogon, O. barthii and O. glumaepatula. The latter three species are closely related to one another with O. barthii and O. glumaepatula being most closely related. A phylogenetic tree including a hypothetical ancestor with all loci empty for p-SINE1 insertion showed that the strains of O. longistaminata are related most closely to the hypothetical ancestor. This indicates that O. longistaminata and O. meridionalis diverged early on, whereas the other species diverged relatively recently, and suggests that the Oryza genus with AA genome might have originated in Africa, rather than in Asia.


Subject(s)
Evolution, Molecular , Oryza/genetics , Short Interspersed Nucleotide Elements , Base Sequence , DNA Transposable Elements , Diploidy , Molecular Sequence Data , Phylogeny
13.
Plant J ; 32(1): 115-27, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12366805

ABSTRACT

pMADS3, a petunia class C gene, is the candidate homologue of Arabidopsis AGAMOUS (AG), which is involved in the specification of stamens and carpels. We report the characterization of loss-of-function phenotype of pMADS3 that resulted from silencing of this gene. Silencing of pMADS3 resulted in homeotic conversion of stamens into petaloid structures, whereas the carpels were only weakly affected. Ectopic secondary inflorescences emerged from the interstamenal region in the third whorl, which is unique and has not been reported for any class C gene of other plant species. Third-order inflorescences emerged at corresponding positions in the third whorl of inner flowers of secondary inflorescences, indicating reiterative conversion of parts of the floral meristem into inflorescence meristem. On the basis of phenotypic analysis of the pMADS3-silenced plants, we propose that pMADS3 is involved in determination of floral organ and floral meristem identity in petunia. Two hybrid studies in yeast showed that PMADS3 protein interacted specifically with FBP2, a candidate homologue of Arabidopsis SEPALLATA3 (SEP3). The evidence presented here suggest that a complex involving PMADS3 and FBP2 is responsible for specification of organ identity in the third whorl.


Subject(s)
Flowers/growth & development , MADS Domain Proteins/genetics , Meristem/growth & development , Petunia/growth & development , Plant Proteins/genetics , Flowers/genetics , Flowers/ultrastructure , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Gene Silencing , Genes, Plant/genetics , Glucuronidase/genetics , Glucuronidase/metabolism , MADS Domain Proteins/metabolism , Meristem/genetics , Microscopy, Electron, Scanning , Molecular Sequence Data , Petunia/genetics , Petunia/ultrastructure , Phenotype , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL