Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
iScience ; 27(5): 109647, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38638572

ABSTRACT

Monitoring in vivo viral dynamics can improve our understanding of pathogenicity and tissue tropism. Because the gene size of RNA viruses is typically small, NanoLuc is the primary choice for accommodation within viral genome. However, NanoLuc/Furimazine and also the conventional firefly luciferase/D-luciferin are known to exhibit relatively low tissue permeability and thus less sensitivity for visualization of deep tissue including lungs. Here, we demonstrated in vivo sufficient visualization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using the pair of a codon-optimized Akaluc and AkaLumine. We engineered the codon-optimized Akaluc gene possessing the similar GC ratio of SARS-CoV-2. Using the SARS-CoV-2 recombinants carrying the codon-optimized Akaluc, we visualized in vivo infection of respiratory organs, including the tissue-specific differences associated with particular variants. Additionally, we could evaluate the efficacy of antivirals by monitoring changes in Akaluc signals. Overall, we offer an effective technology for monitoring viral dynamics in live animals.

2.
Nat Commun ; 15(1): 1176, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332154

ABSTRACT

Circulation of SARS-CoV-2 Omicron XBB has resulted in the emergence of XBB.1.5, a new Variant of Interest. Our phylogenetic analysis suggests that XBB.1.5 evolved from XBB.1 by acquiring the S486P spike (S) mutation, subsequent to the acquisition of a nonsense mutation in ORF8. Neutralization assays showed similar abilities of immune escape between XBB.1.5 and XBB.1. We determine the structural basis for the interaction between human ACE2 and the S protein of XBB.1.5, showing similar overall structures between the S proteins of XBB.1 and XBB.1.5. We provide the intrinsic pathogenicity of XBB.1 and XBB.1.5 in hamsters. Importantly, we find that the ORF8 nonsense mutation of XBB.1.5 resulted in impairment of MHC suppression. In vivo experiments using recombinant viruses reveal that the XBB.1.5 mutations are involved with reduced virulence of XBB.1.5. Together, our study identifies the two viral functions defined the difference between XBB.1 and XBB.1.5.


Subject(s)
COVID-19 , Animals , Cricetinae , Humans , Codon, Nonsense , Phylogeny , SARS-CoV-2/genetics , Biological Assay
3.
Cell Host Microbe ; 32(2): 170-180.e12, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38280382

ABSTRACT

In late 2023, several SARS-CoV-2 XBB descendants, notably EG.5.1, were predominant worldwide. However, a distinct SARS-CoV-2 lineage, the BA.2.86 variant, also emerged. BA.2.86 is phylogenetically distinct from other Omicron sublineages, accumulating over 30 amino acid mutations in its spike protein. Here, we examined the virological characteristics of the BA.2.86 variant. Our epidemic dynamics modeling suggested that the relative reproduction number of BA.2.86 is significantly higher than that of EG.5.1. Additionally, four clinically available antivirals were effective against BA.2.86. Although the fusogenicity of BA.2.86 spike is similar to that of the parental BA.2 spike, the intrinsic pathogenicity of BA.2.86 in hamsters was significantly lower than that of BA.2. Since the growth kinetics of BA.2.86 are significantly lower than those of BA.2 both in vitro and in vivo, the attenuated pathogenicity of BA.2.86 is likely due to its decreased replication capacity. These findings uncover the features of BA.2.86, providing insights for control and treatment.


Subject(s)
COVID-19 , Animals , Cricetinae , SARS-CoV-2/genetics , Amino Acids , Kinetics , Mutation
4.
Sci Rep ; 14(1): 778, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38253656

ABSTRACT

Accurate determination of human tumor malignancy is important for choosing efficient and safe therapies. Bioimaging technologies based on luminescent molecules are widely used to localize and distinguish active tumor cells. Here, we report a human cancer grade probing system (GPS) using a water-soluble and structure-changeable Eu(III) complex for the continuous detection of early human brain tumors of different malignancy grades. Time-dependent emission spectra of the Eu(III) complexes in various types of tumor cells were recorded. The radiative rate constants (kr), which depend on the geometry of the Eu(III) complex, were calculated from the emission spectra. The tendency of the kr values to vary depended on the tumor cells at different malignancy grades. Between T = 0 and T = 3 h of invasion, the kr values exhibited an increase of 4% in NHA/TS (benign grade II gliomas), 7% in NHA/TSR (malignant grade III gliomas), and 27% in NHA/TSRA (malignant grade IV gliomas). Tumor cells with high-grade malignancy exhibited a rapid upward trend in kr values. The cancer GPS employs Eu(III) emissions to provide a new diagnostic method for determining human brain tumor malignancy.


Subject(s)
Brain Neoplasms , Glioma , Humans , Brain Neoplasms/diagnostic imaging , Brain , Luminescence , Records
5.
Int J Gynecol Pathol ; 43(1): 41-46, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37406360

ABSTRACT

Uterine tumor resembling ovarian sex cord tumor (UTROSCT) is a rare tumor with low malignant potential that commonly occurs in middle age. Although more than 100 cases have been reported to date, myxoid morphology is not well documented. Here, we present a 75-yr-old woman with abnormal vaginal bleeding, with an 8-cm mass in the uterine corpus detected by irregular, high-intensity signaling on T2-weighted imaging. The uterine mass had a glistening mucinous appearance on gross examination. Microscopically, most of the tumor cells were floating in the myxoid stroma. The tumor cells formed clusters or nests with abundant cytoplasm, while some exhibited trabecular or rhabdoid appearances. Immunohistochemically, tumor cells were positive for pancytokeratin (AE1/AE3), α-smooth muscle actin, CD10, progesterone receptor, and some sex cord markers such as calretinin, inhibin, CD56, steroidogenic factor-1. Electron microscopy demonstrated epithelial and sex cord differentiation. This tumor was negative for JAZF1-JJAZ1 fusion gene that is frequently found in low-grade endometrial stromal sarcoma. Fusion genes related to UTROSCT, including NCOA2/3 , were not detected by reverse transcription polymerase chain reaction. The present case suggests that UTROSCT should be included in the differential diagnosis of myxoid uterine tumors.


Subject(s)
Endometrial Neoplasms , Endometrial Stromal Tumors , Ovarian Neoplasms , Sex Cord-Gonadal Stromal Tumors , Uterine Neoplasms , Middle Aged , Female , Humans , Uterine Neoplasms/pathology , Endometrial Stromal Tumors/pathology , Sex Cord-Gonadal Stromal Tumors/diagnosis , Sex Cord-Gonadal Stromal Tumors/genetics , Sex Cord-Gonadal Stromal Tumors/pathology , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/pathology , Biomarkers, Tumor
6.
Commun Biol ; 6(1): 772, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37488344

ABSTRACT

The unremitting emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants necessitates ongoing control measures. Given its rapid spread, the new Omicron subvariant BA.5 requires urgent characterization. Here, we comprehensively analyzed BA.5 with the other Omicron variants BA.1, BA.2, and ancestral B.1.1. Although in vitro growth kinetics of BA.5 was comparable among the Omicron subvariants, BA.5 was much more fusogenic than BA.1 and BA.2. Airway-on-a-chip analysis showed that, among Omicron subvariants, BA.5 had enhanced ability to disrupt the respiratory epithelial and endothelial barriers. Furthermore, in our hamster model, in vivo pathogenicity of BA.5 was slightly higher than that of the other Omicron variants and less than that of ancestral B.1.1. Notably, BA.5 gains efficient virus spread compared with BA.1 and BA.2, leading to prompt immune responses. Our findings suggest that BA.5 has low pathogenicity compared with the ancestral strain but enhanced virus spread /inflammation compared with earlier Omicron subvariants.


Subject(s)
COVID-19 , Animals , Cricetinae , SARS-CoV-2 , Virulence , Inflammation
7.
Nat Commun ; 14(1): 2671, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169744

ABSTRACT

In late 2022, various Omicron subvariants emerged and cocirculated worldwide. These variants convergently acquired amino acid substitutions at critical residues in the spike protein, including residues R346, K444, L452, N460, and F486. Here, we characterize the convergent evolution of Omicron subvariants and the properties of one recent lineage of concern, BQ.1.1. Our phylogenetic analysis suggests that these five substitutions are recurrently acquired, particularly in younger Omicron lineages. Epidemic dynamics modelling suggests that the five substitutions increase viral fitness, and a large proportion of the fitness variation within Omicron lineages can be explained by these substitutions. Compared to BA.5, BQ.1.1 evades breakthrough BA.2 and BA.5 infection sera more efficiently, as demonstrated by neutralization assays. The pathogenicity of BQ.1.1 in hamsters is lower than that of BA.5. Our multiscale investigations illuminate the evolutionary rules governing the convergent evolution for known Omicron lineages as of 2022.


Subject(s)
COVID-19 , Animals , Cricetinae , Phylogeny , SARS-CoV-2/genetics , Amino Acid Substitution , Biological Assay , Antibodies, Neutralizing , Antibodies, Viral
8.
Nat Commun ; 14(1): 2800, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37193706

ABSTRACT

In late 2022, SARS-CoV-2 Omicron subvariants have become highly diversified, and XBB is spreading rapidly around the world. Our phylogenetic analyses suggested that XBB emerged through the recombination of two cocirculating BA.2 lineages, BJ.1 and BM.1.1.1 (a progeny of BA.2.75), during the summer of 2022. XBB.1 is the variant most profoundly resistant to BA.2/5 breakthrough infection sera to date and is more fusogenic than BA.2.75. The recombination breakpoint is located in the receptor-binding domain of spike, and each region of the recombinant spike confers immune evasion and increases fusogenicity. We further provide the structural basis for the interaction between XBB.1 spike and human ACE2. Finally, the intrinsic pathogenicity of XBB.1 in male hamsters is comparable to or even lower than that of BA.2.75. Our multiscale investigation provides evidence suggesting that XBB is the first observed SARS-CoV-2 variant to increase its fitness through recombination rather than substitutions.


Subject(s)
COVID-19 , Animals , Cricetinae , Humans , Male , Phylogeny , SARS-CoV-2/genetics , Recombination, Genetic , Spike Glycoprotein, Coronavirus/genetics
10.
Sci Rep ; 13(1): 2233, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36788295

ABSTRACT

Neural regeneration is extremely difficult to achieve. In traumatic brain injuries, the loss of brain parenchyma volume hinders neural regeneration. In this study, neuronal tissue engineering was performed by using electrically charged hydrogels composed of cationic and anionic monomers in a 1:1 ratio (C1A1 hydrogel), which served as an effective scaffold for the attachment of neural stem cells (NSCs). In the 3D environment of porous C1A1 hydrogels engineered by the cryogelation technique, NSCs differentiated into neuroglial cells. The C1A1 porous hydrogel was implanted into brain defects in a mouse traumatic damage model. The VEGF-immersed C1A1 porous hydrogel promoted host-derived vascular network formation together with the infiltration of macrophages/microglia and astrocytes into the gel. Furthermore, the stepwise transplantation of GFP-labeled NSCs supported differentiation towards glial and neuronal cells. Therefore, this two-step method for neural regeneration may become a new approach for therapeutic brain tissue reconstruction after brain damage in the future.


Subject(s)
Brain Injuries, Traumatic , Neural Stem Cells , Mice , Animals , Hydrogels , Neurons , Brain Injuries, Traumatic/therapy , Tissue Engineering/methods , Tissue Scaffolds , Biocompatible Materials , Cell Differentiation
11.
Front Cardiovasc Med ; 10: 1005408, 2023.
Article in English | MEDLINE | ID: mdl-36815024

ABSTRACT

Introduction: Recent studies have demonstrated that sodium-glucose co-transporter-2 inhibitors (SGLT2-i) reduce the risk of atrial fibrillation (AF) in patients with diabetes mellitus (DM), in which oxidative stress due to increased reactive oxygen species (ROS) contributes to the pathogenesis of AF. We aimed to further investigate this, and examine whether the SGLT2-i empagliflozin suppresses mitochondrial-ROS generation and mitigates fibrosis. Methods: A high-fat diet and low-dose streptozotocin treatment were used to induce type-2 DM (T2DM) in Sprague-Dawley rats. The rats were randomly divided into three groups: control, DM, and DM treated with empagliflozin (30 mg/kg/day) for 8 weeks. The mitochondrial respiratory capacity and ROS generation in the atrial myocardium were measured using a high-resolution respirometer. Oxidative stress markers and protein expression related to mitochondrial biogenesis and dynamics as well as the mitochondrial morphology were examined in the atrial tissue. Additionally, mitochondrial function was examined in H9c2 cardiomyoblasts. Atrial tachyarrhythmia (ATA) inducibility, interatrial conduction time (IACT), and fibrosis were also measured. Results: Inducibility of ATA, fibrosis, and IACT were increased in rats with DM when compared to controls, all of which were restored by empagliflozin treatment. In addition, the rats with DM had increased mitochondrial-ROS with an impaired complex I-linked oxidative phosphorylation capacity. Importantly, empagliflozin seemed to ameliorate these impairments in mitochondrial function. Furthermore, empagliflozin reversed the decrease in phosphorylated AMPK expression and altered protein levels related to mitochondrial biogenesis and dynamics, and increased mitochondrial content. Empagliflozin also improved mitochondrial function in H9c2 cells cultured with high glucose medium. Discussion: These data suggest that empagliflozin has a cardioprotective effect, at least in part, by reducing mitochondrial ROS generation through AMPK signaling pathways in the atrium of diabetic rats. This suggests that empagliflozin might suppress the development of AF in T2DM.

12.
Biochem Biophys Res Commun ; 642: 41-49, 2023 01 29.
Article in English | MEDLINE | ID: mdl-36549099

ABSTRACT

Cancer stem cells (CSCs) has been a key target to cure cancer patients completely. Although many CSC markers have been identified, they are frequently cancer type-specific and those expressions are occasionally variable, which becomes an obstacle to elucidate the characteristics of the CSCs. Here we scrutinized the relationship between stemness elevation and geometrical features of single cells. The PAMPS hydrogel was utilized to create the CSCs from mouse myoblast C2C12 and its synovial sarcoma model cells. qRT-PCR analysis confirmed the significant increase in expression levels of Sox2, Nanog, and Oct3/4 on the PAMPS gel, which was higher in the synovial sarcoma model cells. Of note, the morphological heterogeneity was appeared on the PAMPS gel, mainly including flat spreading, elongated spindle, and small round cells, and the Sox2 expression was highest in the small round cells. To examine the role of morphological differences in the elevation of stemness, over 6,400 cells were segmented along with the Sox2 intensity, and 12 geometrical features were extracted at single cell level. A nonlinear mapping of the geometrical features by using uniform manifold approximation and projection (UMAP) clearly revealed the existence of relationship between morphological differences and the stemness elevation, especially for C2C12 and its synovial sarcoma model on the PAMPS gel in which the small round cells possess relatively high Sox2 expression on the PAMPS gel, which supports the strong relationship between morphological changes and the stemness elevation. Taken together, these geometrical features can be useful for morphological profiling of CSCs to classify and distinguish them for understanding of their role in disease progression and drug discovery.


Subject(s)
Sarcoma, Synovial , Sarcoma , Mice , Animals , Sarcoma, Synovial/metabolism , Hydrogels , Pathogen-Associated Molecular Pattern Molecules , Neoplastic Stem Cells/metabolism , Sarcoma/metabolism
13.
Cell ; 185(21): 3992-4007.e16, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36198317

ABSTRACT

After the global spread of the SARS-CoV-2 Omicron BA.2, some BA.2 subvariants, including BA.2.9.1, BA.2.11, BA.2.12.1, BA.4, and BA.5, emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these BA.2 subvariants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1/2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. We further provided the structure of the BA.4/5 spike receptor-binding domain that binds to human ACE2 and considered how the substitutions in the BA.4/5 spike play roles in ACE2 binding and immune evasion. Moreover, experiments using hamsters suggested that BA.4/5 is more pathogenic than BA.2. Our multiscale investigations suggest that the risk of BA.2 subvariants, particularly BA.4/5, to global health is greater than that of original BA.2.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Antibodies, Viral , Humans , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
14.
Nat Commun ; 13(1): 6213, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266283

ABSTRACT

Living organisms share the ability to grow various microstructures on their surface to achieve functions. Here we present a force stamp method to grow microstructures on the surface of hydrogels based on a force-triggered polymerisation mechanism of double-network hydrogels. This method allows fast spatial modulation of the morphology and chemistry of the hydrogel surface within seconds for on-demand functions. We demonstrate the oriented growth of cells and directional transportation of water droplets on the engineered hydrogel surfaces. This force-triggered method to chemically engineer the hydrogel surfaces provides a new tool in addition to the conventional methods using light or heat, and will promote the wide application of hydrogels in various fields.


Subject(s)
Hydrogels , Water , Hydrogels/chemistry , Water/chemistry
15.
Cell Host Microbe ; 30(11): 1540-1555.e15, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36272413

ABSTRACT

The SARS-CoV-2 Omicron BA.2.75 variant emerged in May 2022. BA.2.75 is a BA.2 descendant but is phylogenetically distinct from BA.5, the currently predominant BA.2 descendant. Here, we show that BA.2.75 has a greater effective reproduction number and different immunogenicity profile than BA.5. We determined the sensitivity of BA.2.75 to vaccinee and convalescent sera as well as a panel of clinically available antiviral drugs and antibodies. Antiviral drugs largely retained potency, but antibody sensitivity varied depending on several key BA.2.75-specific substitutions. The BA.2.75 spike exhibited a profoundly higher affinity for its human receptor, ACE2. Additionally, the fusogenicity, growth efficiency in human alveolar epithelial cells, and intrinsic pathogenicity in hamsters of BA.2.75 were greater than those of BA.2. Our multilevel investigations suggest that BA.2.75 acquired virological properties independent of BA.5, and the potential risk of BA.2.75 to global health is greater than that of BA.5.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies, Neutralizing , Antibodies, Viral , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Serotherapy
16.
Cell ; 185(12): 2103-2115.e19, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35568035

ABSTRACT

Soon after the emergence and global spread of the SARS-CoV-2 Omicron lineage BA.1, another Omicron lineage, BA.2, began outcompeting BA.1. The results of statistical analysis showed that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralization experiments revealed that immunity induced by COVID vaccines widely administered to human populations is not effective against BA.2, similar to BA.1, and that the antigenicity of BA.2 is notably different from that of BA.1. Cell culture experiments showed that the BA.2 spike confers higher replication efficacy in human nasal epithelial cells and is more efficient in mediating syncytia formation than the BA.1 spike. Furthermore, infection experiments using hamsters indicated that the BA.2 spike-bearing virus is more pathogenic than the BA.1 spike-bearing virus. Altogether, the results of our multiscale investigations suggest that the risk of BA.2 to global health is potentially higher than that of BA.1.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , COVID-19/virology , Cricetinae , Epithelial Cells , Humans , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics
17.
Biochim Biophys Acta Gen Subj ; 1866(9): 130168, 2022 09.
Article in English | MEDLINE | ID: mdl-35594965

ABSTRACT

Swainsonine (SWA), a potent inhibitor of class II α-mannosidases, is present in a number of plant species worldwide and causes severe toxicosis in livestock grazing these plants. The mechanisms underlying SWA-induced animal poisoning are not fully understood. In this study, we analyzed the alterations that occur in N- and free N-glycomic upon addition of SWA to HepG2 cells to understand better SWA-induced glycomic alterations. After SWA addition, we observed the appearance of SWA-specific glycomic alterations, such as unique fucosylated hybrid-type and fucosylated M5 (M5F) N-glycans, and a remarkable increase in all classes of Gn1 FNGs. Further analysis of the context of these glycomic alterations showed that (fucosylated) hybrid type N-glycans were not the precursors of these Gn1 FNGs and vice versa. Time course analysis revealed the dynamic nature of glycomic alterations upon exposure of SWA and suggested that accumulation of free N-glycans occurred earlier than that of hybrid-type N-glycans. Hybrid-type N-glycans, of which most were uniquely core fucosylated, tended to increase slowly over time, as was observed for M5F N-glycans. Inhibition of swainsonine-induced unique fucosylation of hybrid N-glycans and M5 by coaddition of 2-fluorofucose caused significant increases in paucimannose- and fucosylated paucimannose-type N-glycans, as well as paucimannose-type free N-glycans. The results not only revealed the gross glycomic alterations in HepG2 cells induced by swainsonine, but also provide information on the global interrelationships between glycomic alterations.


Subject(s)
Glycomics , Swainsonine , Animals , Glycosylation , Hep G2 Cells , Humans , Polysaccharides , Swainsonine/toxicity
18.
Sci Rep ; 12(1): 1733, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35110666

ABSTRACT

It is important to determine the activation status of Rac and Cdc42 in cancer tissues for the prediction of metastasis and patient prognosis. However, it has been impossible to detect their spatial activation on formalin-fixed paraffin embedded (FFPE) surgical specimens thus far. Here, we established a novel detection technique for activated Rac/Cdc42 in human colon cancer FFPE tissues by using a p21-activated kinase (PAK)-Rac binding domain (RBD) detection probe fused with glutathione S-transferase (GST), designated GST-PAK-RBD, and novel rapid-immunohistochemistry (R-IHC) systems using noncontact alterating-current electric field mixing, although there is a technical limitation in that it may not distinguish between Rac members and Cdc42. In 50 cases of colon cancer, various activation patterns of Rac/Cdc42 were observed, which were designated plasma membrane, cytoplasm, mixed pattern, and polarized distribution. The activity was striking in the invasive fronts of tumors and significantly correlated with tumor invasion properties evaluated by TNM classification. Of note, in tissue microarray (TMA) samples, 29 of 33 cases demonstrated higher Rac1/Cdc42 activity in the tumor area than the corresponding normal mucosa. In addition, positive correlations were detected between Rac/Cdc42 activity and clinicopathological factors such as venous and lymphatic vessel invasion. These results suggest that understanding Rac and Cdc42 activations in cancer tissues would be valuable as an option for molecular therapy as personalized medicine.


Subject(s)
Biomarkers, Tumor/metabolism , Colonic Neoplasms/enzymology , Immunohistochemistry , cdc42 GTP-Binding Protein/metabolism , rac GTP-Binding Proteins/metabolism , Animals , Colonic Neoplasms/pathology , Electricity , Enzyme Activation , HCT116 Cells , HEK293 Cells , Humans , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Neoplasm Staging , Predictive Value of Tests , Tissue Array Analysis
19.
Nature ; 603(7902): 700-705, 2022 03.
Article in English | MEDLINE | ID: mdl-35104835

ABSTRACT

The emergence of the Omicron variant of SARS-CoV-2 is an urgent global health concern1. In this study, our statistical modelling suggests that Omicron has spread more rapidly than the Delta variant in several countries including South Africa. Cell culture experiments showed Omicron to be less fusogenic than Delta and than an ancestral strain of SARS-CoV-2. Although the spike (S) protein of Delta is efficiently cleaved into two subunits, which facilitates cell-cell fusion2,3, the Omicron S protein was less efficiently cleaved compared to the S proteins of Delta and ancestral SARS-CoV-2. Furthermore, in a hamster model, Omicron showed decreased lung infectivity and was less pathogenic compared to Delta and ancestral SARS-CoV-2. Our multiscale investigations reveal the virological characteristics of Omicron, including rapid growth in the human population, lower fusogenicity and attenuated pathogenicity.


Subject(s)
COVID-19/pathology , COVID-19/virology , Membrane Fusion , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Virus Internalization , Animals , COVID-19/epidemiology , Cell Line , Cricetinae , Humans , In Vitro Techniques , Lung/pathology , Lung/virology , Male , Mesocricetus , Mutation , SARS-CoV-2/classification , SARS-CoV-2/growth & development , South Africa/epidemiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virulence , Virus Replication
20.
J Biomed Mater Res A ; 110(4): 747-760, 2022 04.
Article in English | MEDLINE | ID: mdl-34713570

ABSTRACT

Recently, we have developed a hydroxyapatite (HAp)-hybridized double-network (DN) hydrogel (HAp/DN gel), which can robustly bond to the bone tissue in the living body. The purpose of this study is to clarify whether the HAp/DN gel surface can differentiate the bone marrow-derived mesenchymal stem cells (MSCs) to osteogenic cells. We used the MSCs which were harvested from the rabbit bone marrow and cultured on the polystyrene (PS) dish using the autogenous serum-supplemented medium. First, we confirmed the properties of MSCs by evaluating colony forming unit capacity, expression of MSC markers using flow cytometry, and multidifferential capacity. Secondly, polymerase chain reaction analysis demonstrated that the HAp/DN gel surface significantly enhanced mRNA expression of the eight osteogenic markers (TGF-ß1, BMP-2, Runx2, Col-1, ALP, OPN, BSP, and OCN) in the cultured MSCs at 7 days than the PS surfaces (p < 0.0001), while the DN gel and HAp surfaces provided no or only a slight effect on the expression of these markers except for Runx2. Additionally, the alkaline phosphatase activity was significantly higher in the cells cultured on the HAp/DN gel surface than in the other three material surfaces (p < 0.0001). Thirdly, when the HAp/DN gel plug was implanted into the rabbit bone marrow, MSC marker-positive cells were recruited in the tissue generated around the plug at 3 days, and Runx2 and OCN were highly expressed in these cells. In conclusion, this study demonstrated that the HAp/DN gel surface can differentiate the MSCs into osteogenic cells.


Subject(s)
Durapatite , Mesenchymal Stem Cells , Animals , Bone Marrow/metabolism , Bone Marrow Cells/metabolism , Cell Differentiation/genetics , Cells, Cultured , Durapatite/chemistry , Hydrogels/metabolism , Hydrogels/pharmacology , Osteogenesis/genetics , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...