Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mycopathologia ; 185(4): 613-627, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32710392

ABSTRACT

Emmonsia crescens is known as an environmental pathogen causing adiaspiromycosis in small rodents. As the generic name Emmonsia is no longer available for this species, its taxonomic position is re-evaluated. The intraspecific variation of Emmonsia crescens was analyzed using molecular, morphological, and physiological data, and the relationship between frequency of adiaspiromycosis and body temperature of host animals was explored. A North American and a pan-global lineage could be discerned, each with subclusters at low genetic distance. European strains produced the classical type of very large adiaspores, while in the North American lineage adiaspores relatively small, resembling the broad-based budding cells of Blastomyces. Members of the closely related genus Emergomyces may exhibit large, broad-based in addition to small, narrow-based budding cells. We conclude that the morphology of the pathogenic phase in these fungi differs gradationally between species and even populations, and is therefore less suitable as a diagnostic criterion for generic delimitation. Two Emmonsia species are reclassified in Emergomyces.


Subject(s)
Body Temperature , Chrysosporium , Lung Diseases, Fungal , Animals , Chrysosporium/classification , Chrysosporium/pathogenicity , Lung Diseases, Fungal/veterinary
2.
Phytopathology ; 109(3): 456-468, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30145938

ABSTRACT

Coniferiporia sulphurascens is a facultative fungal pathogen that causes laminated root rot (LRR) in commercially important coniferous species worldwide. This fungus spreads primarily by way of vegetative mycelium transferring at points of contact between infected and healthy roots. Successful intervention to control LRR requires a better understanding of the population structure and genetic variability of C. sulphurascens. In this study, we investigated the population genetic structure and origin of C. sulphurascens populations in western North America and eastern Eurasia collected from multiple coniferous hosts. By analyzing the small and large mitochondrial ribosomal RNA subunit genes combined with six nuclear loci (internal transcribed spacer region, actin, RNA polymerase II largest subunit, RNA polymerase II second-largest subunit, laccase-like multicopper oxidase, and translation elongation factor 1-α), we observed that none of the alleles among the loci were shared between North American (NA) and Eurasian C. sulphurascens populations. In total, 55 multilocus genotypes (MLGs) were retrieved in C. sulphurascens isolates occurring in these two continental regions. Of these, 41 MLGs were observed among 58 isolates collected from widespread locations in British Columbia (Canada) and the northwestern United States, while 14 MLGs were observed among 16 isolates sampled in Siberia and Japan. Our data showed that the levels of genetic differentiation between the NA and Eurasian populations are much greater than the populations from within each continental region; the two continental populations formed clearly divergent phylogenetic clades or lineages since they were separated approximately 7.5 million years ago. Moreover, the Eurasian population could be the source of the NA population. Our study indicates the existence of cryptic diversity in this pathogen species, and strongly suggests that the NA and Eurasian populations represent two lineages, which have progressively diverged from each other in allopatry.


Subject(s)
Genetic Variation , Plant Diseases , British Columbia , Japan , North America , Northwestern United States , Phylogeny , Plant Diseases/microbiology , Sequence Analysis, DNA
3.
Mol Ecol Resour ; 9(6): 1500-3, 2009 Nov.
Article in English | MEDLINE | ID: mdl-21564944

ABSTRACT

The largest forest pest epidemic in Canadian history caused by the mountain pine beetle (MPB) and its fungal associates has killed over 15 million hectares of forest. Sixty simple sequence repeat regions were identified from Grosmannia clavigera, an MPB associated fungus. Eight loci genotyped in 53 isolates from two populations in British Columbia, Canada revealed three to 10 alleles per locus and gene diversities of 0 to 0.79. All but two of these loci showed length polymorphism in Leptographium longiclavatum, a related MPB fungal associate. These microsatellites will be useful in population genetic studies of these fungi.

4.
Mol Phylogenet Evol ; 39(3): 587-97, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16529956

ABSTRACT

Helicosporous fungi form elegant, coiled, and multicellular mitotic spores (conidia). In this paper, we investigate the phylogenetic relationships among helicosporous fungi in the asexual genera Helicoma, Helicomyces, Helicosporium, Helicodendron, Helicoon, and in the sexual genus Tubeufia (Tubeufiaceae, Dothideomycetes, and Ascomycota). We generated ribosomal small subunit and partial large subunit sequences from 39 fungal cultures. These and related sequences from GenBank were analyzed using parsimony, likelihood, and Bayesian analysis. Results showed that helicosporous species arose convergently from six lineages of fungi in the Ascomycota. The Tubeufiaceae s. str. formed a strongly supported monophyletic lineage comprising most species from Helicoma, Helicomyces, and Helicosporium. However, within the Tubeufiaceae, none of the asexual genera were monophyletic. Traditional generic characters, such as whether conidiophores were conspicuous or reduced, the thickness of the conidial filament, and whether or not conidia were hygroscopic, were more useful for species delimitation than for predicting higher level relationships. In spite of their distinctive, barrel-shaped spores, Helicoon species were polyphyletic and had evolved in different ascomycete orders. Helicodendron appeared to be polyphyletic although most representatives occurred within Leotiomycetes. We speculate that some of the convergent spore forms may represent adaptation to dispersal in aquatic environments.


Subject(s)
DNA, Ribosomal/genetics , Fungi/genetics , Phylogeny , Fungi/classification , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL