Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Thromb Res ; 241: 109075, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38955058

ABSTRACT

BACKGROUND: Fibroblast activation protein-α (FAP), a type-II transmembrane serine protease, is associated with wound healing, cancer-associated fibroblasts, and chronic fibrosing diseases. However, its expression in deep vein thrombosis (DVT) remains unclear. Therefore, this study investigated FAP expression and localization in DVT. METHODS: We performed pathological analyses of the aspirated thrombi of patients with DVT (n = 14), classifying thrombotic areas in terms of fresh, cellular lysis, and organizing reaction components. The organizing reaction included endothelialization and fibroblastic reaction. We immunohistochemically examined FAP-expressed areas and cells, and finally analyzed FAP expression in cultured dermal fibroblasts. RESULTS: All the aspirated thrombi showed a heterogeneous mixture of at least two of the three thrombotic areas. Specifically, 83 % of aspirated thrombi showed fresh and organizing reaction components. Immunohistochemical expression of FAP was restricted to the organizing area. Double immunofluorescence staining showed that FAP in the thrombi was mainly expressed in vimentin-positive or α-smooth muscle actin-positive fibroblasts. Some CD163-positive macrophages expressed FAP. FAP mRNA and protein levels were higher in fibroblasts with low-proliferative activity cultured under 0.1 % fetal bovine serum (FBS) than that under 10 % FBS. Fibroblasts cultured in 10 % FBS showed a significant decrease in FAP mRNA levels following supplementation with hemin, but not with thrombin. CONCLUSIONS: The heterogeneous composition of venous thrombi suggests a multistep thrombus formation process in human DVT. Further, fibroblasts or myofibroblasts may express FAP during the organizing process. FAP expression may be higher in fibroblasts with low proliferative activity.

2.
Nucl Med Commun ; 45(1): 68-76, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37728607

ABSTRACT

BACKGROUND: Small cell lung cancer (SCLC) has a poor prognosis, and Roundabout homolog 1 (ROBO1) is frequently expressed in SCLC. ROBO1-targeted radioimmunotherapy (RIT) previously showed tumor shrinkage, but regrowth with fibroblast infiltration was observed. The fibroblasts would support tumor survival by secreting growth factors and cytokines. Inhibition of fibroblasts offers a candidate strategy for increasing RIT efficacy. Here, we evaluated the efficacy of combination therapy with 90 Y-labeled anti-ROBO1 antibody B5209B ( 90 Y-B5209B) and the tyrosine kinase inhibitor nintedanib in SCLC xenograft mice. METHODS: Subcutaneous NCI-H69 SCLC xenograft mice were divided into four groups: saline, nintedanib alone, RIT alone, and a combination of RIT with nintedanib (combination). A single dose of 7.4 MBq of 90 Y-B5209B was injected intravenously. Nintedanib was orally administered at a dose of 400 µg five times a week for 4 weeks. Tumor volumes and body weights were measured regularly. Tumor sections were stained with hematoxylin and eosin or Masson trichrome. RESULTS: All six tumors in the combination therapy group disappeared, and four tumors showed no regrowth. Although RIT alone induced similar tumor shrinkage, regrowth was observed. Prolonged survival in the combination therapy group was found compared with the other groups. Temporary body weight loss was observed in RIT and combination therapy. There is no difference in fibroblast infiltration between RIT alone and the combination. CONCLUSION: Nintedanib significantly enhanced the anti-tumor effects of RIT with the 90 Y-B5209B without an increase in toxicity. These findings encourage further research into the potential clinical application of combining RIT with nintedanib.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Animals , Mice , Radioimmunotherapy , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/radiotherapy , Nerve Tissue Proteins , Antibodies, Monoclonal/therapeutic use , Lung Neoplasms/drug therapy , Heterografts , Receptors, Immunologic
3.
World J Radiol ; 15(11): 315-323, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38058603

ABSTRACT

BACKGROUND: Radionuclides produce Cherenkov radiation (CR), which can potentially activate photosensitizers (PSs) in phototherapy. Several groups have studied Cherenkov energy transfer to PSs using optical imaging; however, cost-effectively identifying whether PSs are excited by radionuclide-derived CR and detecting fluorescence emission from excited PSs remain a challenge. Many laboratories face the need for expensive dedicated equipment. AIM: To cost-effectively confirm whether PSs are excited by radionuclide-derived CR and distinguish fluorescence emission from excited PSs. METHODS: The absorbance and fluorescence spectra of PSs were measured using a microplate reader and fluorescence spectrometer to examine the photo-physical properties of PSs. To mitigate the need for expensive dedicated equipment and achieve the aim of the study, we developed a method that utilizes a charge-coupled device optical imaging system and appropriate long-pass filters of different wavelengths (manual sequential application of long-pass filters of 515, 580, 645, 700, 750, and 800 nm). Tetrakis (4-carboxyphenyl) porphyrin (TCPP) was utilized as a model PS. Different doses of copper-64 (64CuCl2) (4, 2, and 1 mCi) were used as CR-producing radionuclides. Imaging and data acquisition were performed 0.5 h after sample preparation. Differential image analysis was conducted by using ImageJ software (National Institutes of Health) to visually evaluate TCPP fluorescence. RESULTS: The maximum absorbance of TCPP was at 390-430 nm, and the emission peak was at 670 nm. The CR and CR-induced TCPP emissions were observed using the optical imaging system and the high-transmittance long-pass filters described above. The emission spectra of TCPP with a peak in the 645-700 nm window were obtained by calculation and subtraction based on the serial signal intensity (total flux) difference between 64CuCl2 + TCPP and 64CuCl2. Moreover, the differential fluorescence images of TCPP were obtained by subtracting the 64CuCl2 image from the 64CuCl2 + TCPP image. The experimental results considering different 64CuCl2 doses showed a dose-dependent trend. These results demonstrate that a bioluminescence imaging device coupled with different long-pass filters and subtraction image processing can confirm the emission spectra and differential fluorescence images of CR-induced TCPP. CONCLUSION: This simple method identifies the PS fluorescence emission generated by radionuclide-derived CR and can contribute to accelerating the development of Cherenkov energy transfer imaging and the discovery of new PSs.

4.
Pharmaceuticals (Basel) ; 16(11)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-38004392

ABSTRACT

Auger electrons can cause nanoscale physiochemical damage to specific DNA sites that play a key role in cancer cell survival. Radio-Pt is a promising Auger-electron source for damaging DNA efficiently because of its ability to bind to DNA. Considering that the cancer genome is maintained under abnormal gene amplification and expression, here, we developed a novel 191Pt-labeled agent based on pyrrole-imidazole polyamide (PIP), targeting the oncogene MYCN amplified in human neuroblastoma, and investigated its targeting ability and damaging effects. A conjugate of MYCN-targeting PIP and Cys-(Arg)3-coumarin was labeled with 191Pt via Cys (191Pt-MYCN-PIP) with a radiochemical purity of >99%. The binding potential of 191Pt-MYCN-PIP was evaluated via the gel electrophoretic mobility shift assay, suggesting that the radioagent bound to the DNA including the target sequence of the MYCN gene. In vitro assays using human neuroblastoma cells showed that 191Pt-MYCN-PIP bound to DNA efficiently and caused DNA damage, decreasing MYCN gene expression and MYCN signals in in situ hybridization analysis, as well as cell viability, especially in MYCN-amplified Kelly cells. 191Pt-MYCN-PIP also induced a substantial increase in cytosolic dsDNA granules and generated proinflammatory cytokines, IFN-α/ß, in Kelly cells. Tumor uptake of intravenously injected 191Pt-MYCN-PIP was low and its delivery to tumors should be improved for therapeutic application. The present results provided a potential strategy, targeting the key oncogenes for cancer survival for Auger electron therapy.

5.
Cancer Sci ; 114(12): 4677-4690, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37781962

ABSTRACT

To select the most suitable chelate for 225 Ac radiolabeling of the anti-FZD10 antibody OTSA101, we directly compared three chelates: S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (p-SCN-Bn-DOTA), 2,2',2″-(10-(1-carboxy-4-((4-isothiocyanatobenzyl)amino)-4-oxobutyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl) triacetic acid (p-SCN-Bn-DOTAGA), and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono-N-hydroxysuccinimide ester (DO3A-NHS-ester). We evaluated the binding affinity of the chelate-conjugated OTSA101 antibodies, as well as the labeling efficiency and stability in murine serum of 225 Ac-labeled OTSA101 as in vitro properties. The biodistribution, intratumoral distribution, absorbed doses, and therapeutic effects of the chelate-conjugated OTSA101 antibodies were assessed in the synovial sarcoma mouse model SYO-1. Of the three conjugates, DOTAGA conjugation had the smallest impact on the binding affinity (p < 0.01). The labeling efficiencies of DOTAGA-OTSA101 and DO3A-OTSA101 were 1.8-fold higher than that of DOTA-OTSA101 (p < 0.01). The stabilities were similar between 225 Ac-labeled DOTA-OTSA101, DOTAGA-OTSA101, and DO3A-OTSA101in serum at 37 and 4°C. The dosimetric analysis based on the biodistribution revealed significantly higher tumor-absorbed doses by 225 Ac-labeled DOTA-OTSA101 and DOTAGA-OTSA101 compared with 225 Ac-DO3A-OTSA101 (p < 0.05). 225 Ac-DOTAGA-OTSA101 exhibited the highest tumor-to-bone marrow ratio, with bone marrow being the dose-limiting tissue. The therapeutic and adverse effects were not significantly different between the three conjugates. Our findings indicate that among the three evaluated chelates, DOTAGA appears to be the most promising chelate to produce 225 Ac-labeled OTSA101 with high binding affinity and high radiochemical yields while providing high absorbed doses to tumors and limited absorbed doses to bone marrow.


Subject(s)
Chelating Agents , Neoplasms , Animals , Mice , Tissue Distribution , Chelating Agents/chemistry , Esters
6.
Cancer Rep (Hoboken) ; 6(12): e1909, 2023 12.
Article in English | MEDLINE | ID: mdl-37840014

ABSTRACT

BACKGROUND: Osteoblastic skeletal metastasis is frequently observed in prostate cancer. An effective therapy has not been developed due to the unclear molecular mechanism. The Wnt family is involved in various biological phenomena including bone metabolism. There is no direct evidence that the family causes osteoblastic skeletal metastasis. AIMS: The present study aims to evaluate whether overexpressed Wnt induces osteoblastic bone metastasis in a well-established osteolytic bone metastatic model. METHODS AND RESULTS: The breast cancer-derived 5a-D-Luc-ZsGreen cells were transfected with Wnt1, Wnt3A, and Wnt5A expression vectors, producing stably highly expressing cells. These cells were intracardially transplanted in nude mice. Bone metastasis development was confirmed by fluorescence imaging. Hind-limb bones including metastasis were dissected and visualized through micro-CT imaging. After imaging, sections were stained with hematoxylin and eosin (H&E), and immunohistochemically stained with an anti-SATB2 antibody. Luminescent imaging confirmed mice with bone metastases in the hind limbs. Micro-CT imaging found an osteoblastic change only in bone metastasis of mice transplanted with Wnt1-expressing cells. This was confirmed on H&E-stained sections. SATB2 immunostaining showed differentiated osteoblasts were at the site of bone metastases in the diaphysis. SATB2 in the Wnt/ß-catenin pathway activated by overexpressed Wnt1 could induce osteoblastic change. CONCLUSION: Our findings provided direct evidence Wnt1 is involved in osteoblastic bone metastasis development. Our model would be a powerful tool for further elucidating molecular mechanisms underlying the disease and developing effective therapies.


Subject(s)
Bone Neoplasms , Prostatic Neoplasms , Male , Mice , Humans , Animals , Mice, Nude , Bone Neoplasms/secondary , Prostatic Neoplasms/pathology
7.
World J Clin Oncol ; 13(11): 880-895, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36483974

ABSTRACT

BACKGROUND: Photodynamic therapy (PDT) is a minimally invasive form of cancer therapy, and the development of a novel photosensitizer (PS) with optimal properties is important for enhancing PDT efficacy. Folate receptor (FR) membrane protein is frequently overexpressed in 40% of human cancer and a good candidate for tumor-specific targeting. Specific active targeting of PS to FR can be achieved by conjugation with the folate moiety. A folate-linked, near-infrared (NIR)-sensitive probe, folate-Si-rhodamine-1 (FolateSiR-1), was previously developed and is expected to be applicable to NIR-PDT. AIM: To investigate the therapeutic efficacy of NIR-PDT induced by FolateSiR-1, a FR-targeted PS, in preclinical cancer models. METHODS: FolateSiR-1 was developed by conjugating a folate moiety to the Si-rhodamine derivative through a negatively charged tripeptide linker. FR expression in the designated cell lines was examined by western blotting (WB). The selective binding of FolateSiR-1 to FR was confirmed in FR overexpressing KB cells (FR+) and tumors by fluorescence microscopy and in vivo fluorescence imaging. Low FR expressing OVCAR-3 and A4 cell lines were used as negative controls (FR-). The NIR light (635 ± 3 nm)-induced phototoxic effect of FolateSiR-1 was evaluated by cell viability imaging assays. The time-dependent distribution of FolateSiR-1 and its specific accumulation in KB tumors was determined using in vivo longitudinal fluorescence imaging. The PDT effect of FolateSiR-1 was evaluated in KB tumor-bearing mice divided into four experimental groups: (1) FolateSiR-1 (100 µmol/L) alone; (2) FolateSiR-1 (100 µmol/L) followed by NIR irradiation (50 J/cm2); (3) NIR irradiation (50 J/cm2) alone; and (4) no treatment. Tumor volume measurement and immunohistochemical (IHC) and histological examinations of the tumors were performed to analyze the effect of PDT. RESULTS: High FR expression was observed in the KB cells by WB, but not in the OVCAR-3 and A4 cells. Substantial FR-specific binding of FolateSiR-1 was observed by in vitro and in vivo fluorescence imaging. Cell viability imaging assays showed that NIR-PDT induced cell death in KB cells. In vivo longitudinal fluorescence imaging showed rapid peak accumulation of FolateSiR-1 in the KB tumors 2 h after injection. In vivo PDT conducted at this time point caused tumor growth delay. The relative tumor volumes in the PDT group were significantly reduced compared to those in the other groups [5.81 ± 1.74 (NIR-PDT) vs 12.24 ± 2.48 (Folate-SiR-1), vs 11.84 ± 3.67 (IR), vs 12.98 ± 2.78 (Untreated), at Day 16, P < 0.05]. IHC analysis revealed reduced proliferation marker Ki-67-positive cells in the PDT treated tumors, and hematoxylin-eosin staining revealed features of necrotic- and apoptotic cell death. CONCLUSION: FolateSiR-1 has potential for use in PDT, and FR-targeted NIR-PDT may open a new effective strategy for the treatment of FR-overexpressing tumors.

8.
Biochem Biophys Res Commun ; 637: 286-293, 2022 12 31.
Article in English | MEDLINE | ID: mdl-36410278

ABSTRACT

Auger electrons can induce nanoscale physiochemical damage to DNA. The present study reports a sequential and systematic evaluation of the relationship between DNA damage such as double-strand breaks (DSBs) and the cell cycle for the Auger electron-emitting agent radiolabeled cisplatin with DNA binding ability. For dynamic imaging analysis, we used U2OS-derived cancer cells expressing two fluorescent fusion proteins: tumor-suppressor p53 binding protein 1 with a green fluorescent protein (53BP1-EGFP) and proliferating cell nuclear antigen with a red fluorescent protein (PCNA-DsRed). Time-lapse images of the cells were quantitatively analyzed using the ImageJ software with the deepImageJ plugin and the Google Colaboratory platform. From the middle-to-late G1 phase, around the G1-to-S phase transition, we found increased 53BP1 foci in cells treated with the radio-cisplatin. The radio-cisplatin caused significantly more DSBs than the nonradioactive cisplatin and saline in the G1 phase but not in the other phases. These results indicate that Auger electron-induced DNA damage, including DSBs, depends on the cell cycle. The G1 phase, which is associated with low DNA repair capacity and high radiosensitivity, is a promising target; thus, combining radiolabeled cisplatin with agents that arrest cells in the G1 phase could improve the DNA-damaging effect of Auger electrons and their therapeutic efficacy.


Subject(s)
Cisplatin , Electrons , Cisplatin/pharmacology , Cell Division , Cell Cycle , DNA Damage
9.
Cells ; 11(21)2022 11 04.
Article in English | MEDLINE | ID: mdl-36359894

ABSTRACT

pH (low) insertion peptides (pHLIPs) have been developed for cancer imaging and therapy targeting the acidic extracellular microenvironment. However, the characteristics of intratumoral distribution (ITD) of pHLIPs are not yet fully understood. This study aimed to reveal the details of the ITD of pHLIPs and their spatial relationship with other tumor features of concern. The fluorescent dye-labeled pHLIPs were intravenously administered to subcutaneous xenograft mouse models of U87MG and IGR-OV1 expressing αVß3 integrins (using large necrotic tumors). The αVß3 integrin-targeting Cy5.5-RAFT-c(-RGDfK-)4 was used as a reference. In vivo and ex vivo fluorescence imaging, whole-tumor section imaging, fluorescence microscopy, and multiplexed fluorescence colocalization analysis were performed. The ITD of fluorescent dye-labeled pHLIPs was heterogeneous, having a high degree of colocalization with necrosis. A direct one-to-one comparison of highly magnified images revealed the cellular localization of pHLIP in pyknotic, karyorrhexis, and karyolytic necrotic cells. pHLIP and hypoxia were spatially contiguous but not overlapping cellularly. The hypoxic region was found between the ITDs of pHLIP and the cRGD peptide and the Ki-67 proliferative activity remained detectable in the pHLIP-accumulated regions. The results provide a better understanding of the characteristics of ITD of pHLIPs, leading to new insights into the theranostic applications of pHLIPs.


Subject(s)
Fluorescent Dyes , Neoplasms , Humans , Mice , Animals , Integrins , Hydrogen-Ion Concentration , Neoplasms/pathology , Acids , Necrosis , Hypoxia , Tumor Microenvironment
10.
J Cancer Res Ther ; 18(4): 907-914, 2022.
Article in English | MEDLINE | ID: mdl-36149139

ABSTRACT

Background: Gastric cancer is a common cause of cancer-related death worldwide, and peritoneal dissemination is the most frequent metastatic pattern of gastric cancer. However, the treatment of this disease condition remains difficult. It has been demonstrated that intraperitoneal radioimmunotherapy (ipRIT) with 64Cu-labeled cetuximab (anti-epidermal growth factor receptor antibody; 64Cu-cetuximab) is a potential treatment for peritoneal dissemination of gastrointestinal cancer in vivo. Recent preclinical and clinical studies have also shown that a histone deacetylase inhibitor, vorinostat, effectively sensitized gastrointestinal cancer to external radiation. Aim: In the present study, we examined the efficacy of the combined use of vorinostat, as a radiosensitizer during ipRIT with 64Cu-cetuximab in a peritoneal dissemination mouse model with human gastric cancer NUGC4 cells stably expressing red fluorescent protein. Methods: The mouse model was treated by ipRIT with 64Cu-cetuximab plus vorinostat, each single treatment, or saline (control). Side effects, including hematological and biochemical parameters, were evaluated in similarly treated, tumor-free mice. Results: Coadministration of ipRIT with 64Cu-cetuximab + vorinostat significantly prolonged survival compared to control and each single treatment. No significant toxicity signals were observed in all treatment groups. Conclusions: Our data suggest that vorinostat is a potentially effective radiosensitizer for use during the treatment of peritoneal dissemination of gastric cancer by ipRIT with 64Cu-cetuximab.


Subject(s)
Radiation-Sensitizing Agents , Stomach Neoplasms , Animals , Cell Line, Tumor , Cetuximab/therapeutic use , Disease Models, Animal , Histone Deacetylase Inhibitors/pharmacology , Humans , Mice , Radiation-Sensitizing Agents/pharmacology , Radioimmunotherapy , Stomach Neoplasms/drug therapy , Stomach Neoplasms/radiotherapy , Vorinostat
11.
Nucl Med Commun ; 43(11): 1121-1127, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36120823

ABSTRACT

OBJECTIVE: The platinum-based antineoplastic drug cisplatin is commonly used for chemotherapy in clinics. This work aims to demonstrate a radio-platinum tracer is useful for precisely quantifying small amounts of platinum in pharmacokinetics studies. METHODS: A cisplatin radiotracer (radio-cisplatin) was synthesized, and a comprehensive evaluation of cisplatin over 7 days after its intravenous injection into nude mice bearing a subcutaneous lung tumor (H460) was conducted. RESULTS: A biphasic retention curve in the whole body and blood was observed [ T1/2 (α) = 1.14 h, T1/2 (ß) = 5.33 days for the whole body, and T1/2 (α) = 23.9 min, T1/2 (ß) = 4.72 days for blood]. The blood concentration decreased within 1 day after injection. Most of the intact cisplatin was excreted via the kidneys in the early time points, and a small part was distributed in tissues including tumors. The plasma protein binding rate of cisplatin increased rapidly after injection, and the protein-bound cisplatin remained in the blood longer than intact cisplatin. The peak uptake in H460 tumors was 4.7% injected dose per gram at 15 min after injection, and the area under the curve (AUC 0-7 days ) was approximately one-half to one-third of the AUC 0-7 days in the kidneys, liver, and bone, where some toxicity is observed in humans. CONCLUSION: The radio-platinum tracer revealed the highly quantitative biodistribution of cisplatin, providing insights into the properties of cisplatin, including its adverse effects. The tracer enables a precise evaluation of pharmacokinetics for platinum-based drugs with high sensitivity.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Animals , Cisplatin , Humans , Mice , Mice, Nude , Platinum/pharmacokinetics , Tissue Distribution
12.
Transl Oncol ; 23: 101481, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35820360

ABSTRACT

CD137 is an attractive target for cancer immunotherapy, but its expression in normal tissues induces some adverse effects in patients receiving CD137-targeted therapy. To overcome this issue, we developed a switch antibody, STA551, that binds to CD137 only under high ATP concentrations around cells. This study quantified biodistribution of murine switch antibodies in human CD137 knock-in mice to show the viability of the switch antibody concept in vivo. We utilized four antibodies: Sta-MB, Ure-MB, Sta-mIgG1, and KLH-MB. Sta-MB is a switch antibody having the variable region of STA551. The MB is a murine Fc highly binding to murine Fcγ receptor II. Ure-MB has a variable region mimicking the clinically available anti-CD137 agonist antibody urelumab, binding to CD137 regardless of ATP concentration. Sta-mIgG1 has the same variable region as Sta-MB but has the standard murine constant region. KLH-MB binds to keyhole limpet hemocyanin. The four antibodies were radiolabeled with In-111, SPECT/CT imaging was conducted in human CD137 knock-in mice, and the uptake in regions of interest was quantified. 111In-labeled Sta-MB and Sta-mIgG1 showed high uptake in tumors but low uptake in the lymph nodes and spleen in human CD137 knock-in mice. On the other hand, Ure-MB highly accumulated not only in tumors but also in the lymph nodes and spleen. KLH-MB showed low uptake in the tumors, lymph nodes, and spleen. The present study provides evidence that the switch antibody concept works in vivo. Our findings encourage further clinical imaging studies to evaluate the biodistribution of STA551 in patients.

13.
Int J Mol Sci ; 23(10)2022 May 22.
Article in English | MEDLINE | ID: mdl-35628616

ABSTRACT

Peritoneal dissemination of pancreatic cancer has a poor prognosis. We have reported that intraperitoneal radioimmunotherapy using a 64Cu-labeled antibody (64Cu-ipRIT) is a promising adjuvant therapy option to prevent this complication. To achieve personalized 64Cu-ipRIT, we developed a new in vitro tumor cell-binding assay (64Cu-TuBA) system with a panel containing nine candidate 64Cu-labeled antibodies targeting seven antigens (EGFR, HER2, HER3, TfR, EpCAM, LAT1, and CD98), which are reportedly overexpressed in patients with pancreatic cancer. We investigated the feasibility of 64Cu-TuBA to select the highest-binding antibody for individual cancer cell lines and predict the treatment response in vivo for 64Cu-ipRIT. 64Cu-TuBA was performed using six human pancreatic cancer cell lines. For three cell lines, an in vivo treatment study was performed with 64Cu-ipRIT using high-, middle-, or low-binding antibodies in each peritoneal dissemination mouse model. The high-binding antibodies significantly prolonged survival in each mouse model, while low-and middle-binding antibodies were ineffective. There was a correlation between in vitro cell binding and in vivo therapeutic efficacy. Our findings suggest that 64Cu-TuBA can be used for patient selection to enable personalized 64Cu-ipRIT. Tumor cells isolated from surgically resected tumor tissues would be suitable for analysis with the 64Cu-TuBA system in future clinical studies.


Subject(s)
Pancreatic Neoplasms , Radioimmunotherapy , Animals , Cell Line, Tumor , Disease Models, Animal , Feasibility Studies , Humans , Mice , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/radiotherapy , Pancreatic Neoplasms
14.
J Med Chem ; 65(7): 5690-5700, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35358392

ABSTRACT

This study aims to establish new labeling methods for no-carrier-added radio-Pt (191Pt) and to evaluate the in vitro properties of 191Pt-labeled agents compared with those of agents labeled with the common emitter 111In. 191Pt was complexed with the DNA-targeting dye Hoechst33258 via diethylenetriaminepentaacetic acid (DTPA) or the sulfur-containing amino acid cysteine (Cys). The intranuclear fractions of 191Pt- and 111In-labeled Hoechst33258 were comparable, indicating that the labeling for 191Pt via DTPA or Cys and the labeling for 111In via DTPA worked equally well. 191Pt showed a DNA-binding/cellular uptake ratio of more than 1 order of magnitude greater than that of 111In. [191Pt]Pt-Hoechst33258 labeled via Cys showed a higher cellular uptake than that labeled via DTPA, resulting in a very high DNA-binding fraction of [191Pt]Pt-Cys-Hoechst33258 and extensive DNA damage. Our labeling methods of radio-Pt, especially via Cys, promote the development of radio-Pt-based agents for use in Auger electron therapy targeting DNA.


Subject(s)
Cysteine , Pentetic Acid , Cysteine/chemistry , DNA , Electrons , Pentetic Acid/chemistry
15.
Transl Oncol ; 15(1): 101285, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34839108

ABSTRACT

α-Sulfoquinovosylacyl-1,3-propanediol (SQAP) is a semi-synthetic derivative of natural sulfoglycolipid that sensitizes tumors to external-beam radiotherapy. How SQAP affects internal radiotherapy, however, is not known. Here, we investigated the effects of SQAP for radioimmunotherapy (RIT) targeting tissue factor (TF) in a stroma-rich refractory pancreatic cancer mouse model, BxPC-3. A low dose of SQAP (2 mg/kg) increased tumor uptake of the 111In-labeled anti-TF antibody 1849, indicating increased tumor perfusion. The addition of SQAP enhanced the growth-inhibitory effect of 90Y-labeled 1849 without leading to severe body weight changes, allowing for the dose of 90Y-labeled 1849 to be reduced to half that when used alone. Histologic analysis revealed few necrotic and apoptotic cells, but Ki-67-positive proliferating cells and increased vascular formation were detected. These results suggest that the addition of a low dose of SQAP may improve the therapeutic efficacy of TF-targeted RIT by increasing tumor perfusion, even for stroma-rich refractory pancreatic cancer.

16.
Cancer Sci ; 113(2): 721-732, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34935247

ABSTRACT

Synovial sarcomas are rare tumors arising in adolescents and young adults. The prognosis for advanced disease is poor, with an overall survival of 12-18 months. Frizzled homolog 10 (FZD10) is overexpressed in most synovial sarcomas, making it a promising therapeutic target. The results of a phase 1 trial of ß-radioimmunotherapy (RIT) with the 90 Y-labeled anti-FZD10 antibody OTSA101 revealed a need for improved efficacy. The present study evaluated the potential of α-RIT with OTSA101 labeled with the α-emitter 225 Ac. Competitive inhibition and cell binding assays showed that specific binding of 225 Ac-labeled OTSA101 to SYO-1 synovial sarcoma cells was comparable to that of the imaging agent 111 In-labeled OTSA101. Biodistribution studies showed high uptake in SYO-1 tumors and low uptake in normal organs, except for blood. Dosimetric studies showed that the biologically effective dose (BED) of 225 Ac-labeled OTSA101 for tumors was 7.8 Bd higher than that of 90 Y-labeled OTSA101. 90 Y- and 225 Ac-labeled OTSA101 decreased tumor volume and prolonged survival. 225 Ac-labeled OTSA101 achieved a complete response in 60% of mice, and no recurrence was observed. 225 Ac-labeled OTSA101 induced a larger amount of necrosis and apoptosis than 90 Y-labeled OTSA101, although the cell proliferation decrease was comparable. The BED for normal organs and tissues was tolerable; no treatment-related mortality or obvious toxicity, except for temporary body weight loss, was observed. 225 Ac-labeled OTSA101 provided a high BED for tumors and achieved a 60% complete response in the synovial sarcoma mouse model SYO-1. RIT with 225 Ac-labeled OTSA101 is a promising therapeutic option for synovial sarcoma.


Subject(s)
Actinium/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Frizzled Receptors/antagonists & inhibitors , Sarcoma, Synovial/radiotherapy , Actinium/chemistry , Actinium/pharmacokinetics , Alpha Particles/therapeutic use , Animals , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/pharmacokinetics , Cell Line, Tumor , Frizzled Receptors/immunology , Frizzled Receptors/metabolism , Humans , Mice , Radioimmunotherapy , Radiotherapy Dosage , Remission Induction , Sarcoma, Synovial/metabolism , Sarcoma, Synovial/pathology , Tissue Distribution/radiation effects , Tumor Burden/radiation effects , Xenograft Model Antitumor Assays , Yttrium Radioisotopes/chemistry , Yttrium Radioisotopes/pharmacokinetics , Yttrium Radioisotopes/therapeutic use
17.
Atherosclerosis ; 337: 7-17, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34662838

ABSTRACT

BACKGROUND AND AIMS: This study aimed to investigate whether N-benzyl-N-methyl-2-[7,8-dihydro-7-(2-[18F]fluoroethyl)-8-oxo-2-phenyl-9H-purin-9-yl]acetamide (18F-FEDAC), a probe for translocator protein (TSPO), can visualize atherosclerotic lesions in rabbits and whether TSPO is localized in human coronary plaques. METHODS: 18F-FEDAC-PET of a rabbit model of atherosclerosis induced by a 0.5% cholesterol diet and balloon injury of the left carotid artery (n = 7) was performed eight weeks after the injury. The autoradiography intensity of 18F-FEDAC in carotid artery tissue sections was measured, and TSPO expression was evaluated immunohistochemically. TSPO expression was examined in human coronary arteries obtained from autopsy cases (n = 16), and in human coronary plaques (n = 12) aspirated from patients with acute myocardial infarction (AMI). RESULTS: 18F-FEDAC-PET visualized the atherosclerotic lesions in rabbits as high-uptake areas, and the standard uptake value was higher in injured arteries (0.574 ± 0.24) than in uninjured arteries (0.277 ± 0.13, p < 0.05) or myocardium (0.189 ± 0.07, p < 0.05). Immunostaining showed more macrophages and more TSPO expression in atherosclerotic lesions than in uninjured arteries. TSPO was localized in macrophages, and arterial autoradiography intensity was positively correlated with macrophage concentration (r = 0.64) and TSPO (r = 0.67). TSPO expression in human coronary arteries was higher in AMI cases than in non-cardiac death, or in the vulnerable plaques than in early or stable lesions, respectively. TSPO was localized in macrophages in all aspirated coronary plaques with thrombi. CONCLUSIONS: 18F-FEDAC-PET can visualize atherosclerotic lesions, and TSPO-expression may be a marker of high-risk coronary plaques.

18.
Cells ; 10(10)2021 09 22.
Article in English | MEDLINE | ID: mdl-34685483

ABSTRACT

The prognosis of advanced mesothelioma is poor. Podoplanin (PDPN) is highly expressed in most malignant mesothelioma. This study aimed to evaluate the potential alpha-radioimmunotherapy (RIT) with a newly developed anti-PDPN antibody, NZ-16, compared with a previous antibody, NZ-12. METHODS: The in vitro properties of radiolabeled antibodies were evaluated by cell binding and competitive inhibition assays using PDPN-expressing H226 mesothelioma cells. The biodistribution of 111In-labeled antibodies was studied in tumor-bearing mice. The absorbed doses were estimated based on biodistribution data. Tumor volumes and body weights of mice treated with 90Y- and 225Ac-labeled NZ-16 were measured for 56 days. Histologic analysis was conducted. RESULTS: The radiolabeled NZ-16 specifically bound to H226 cells with higher affinity than NZ-12. The biodistribution studies showed higher tumor uptake of radiolabeled NZ-16 compared with NZ-12, providing higher absorbed doses to tumors. RIT with 225Ac- and 90Y-labeled NZ-16 had a significantly higher antitumor effect than RIT with 90Y-labeled NZ-12. 225Ac-labeled NZ-16 induced a larger amount of necrotic change and showed a tendency to suppress tumor volumes and prolonged survival than 90Y-labeled NZ-16. There is no obvious adverse effect. CONCLUSIONS: Alpha-RIT with the newly developed NZ-16 is a promising therapeutic option for malignant mesothelioma.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Mesothelioma, Malignant/pathology , Mesothelioma/drug therapy , Mesothelioma/pathology , Tissue Distribution/physiology , Cell Line, Tumor , Humans , Membrane Glycoproteins/metabolism , Neoplasms/pathology , Xenograft Model Antitumor Assays
19.
Sci Rep ; 11(1): 17933, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34504184

ABSTRACT

Positron-emission tomography (PET) and single-photon-emission computed tomography (SPECT) are well-established nuclear-medicine imaging methods used in modern medical diagnoses. Combining PET with 18F-fluorodeoxyglucose (FDG) and SPECT with an 111In-labelled ligand provides clinicians with information about the aggressiveness and specific types of tumors. However, it is difficult to integrate a SPECT system with a PET system because SPECT requires a collimator. Herein, we describe a novel method that provides simultaneous imaging with PET and SPECT nuclides by combining PET imaging and Compton imaging. The latter is an imaging method that utilizes Compton scattering to visualize gamma rays over a wide range of energies without requiring a collimator. Using Compton imaging with SPECT nuclides, instead of the conventional SPECT imaging method, enables PET imaging and Compton imaging to be performed with one system. In this research, we have demonstrated simultaneous in vivo imaging of a tumor-bearing mouse injected with 18F-FDG and an 111In-antibody by using a prototype Compton-PET hybrid camera. We have succeeded in visualizing accumulations of 18F-FDG and 111In-antibody by performing PET imaging and Compton imaging simultaneously. As simultaneous imaging utilizes the same coordinate axes, it is expected to improve the accuracy of diagnoses.

20.
Int J Mol Sci ; 22(15)2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34361080

ABSTRACT

Photoimmunotherapy (PIT) is an upcoming potential cancer treatment modality, the effect of which is improved in combination with chemotherapy. PIT causes a super-enhanced permeability and retention (SUPR) effect. Here, we quantitatively evaluated the SUPR effect using radiolabeled drugs of varying molecular weights (18F-5FU, 111In-DTPA, 99mTc-HSA-D, and 111In-IgG) to determine the appropriate drug size. PIT was conducted with an indocyanine green-labeled anti-HER2 antibody and an 808 nm laser irradiation. Mice were subcutaneously inoculated with HER2-positive cells in both hindlimbs. The tumor on one side was treated with PIT, and the contralateral side was not treated. The differences between tumor accumulations were evaluated using positron emission tomography or single-photon emission computed tomography. Imaging studies found increased tumor accumulation of agents after PIT. PIT-treated tumors showed significantly increased uptake of 18F-5FU (p < 0.001) and 99mTc-HSA-D (p < 0.001). A tendency toward increased accumulation of 111In-DTPA and 111In-IgG was observed. These findings suggest that some low- and medium-molecular-weight agents are promising candidates for combined PIT, as are macromolecules; hence, administration after PIT could enhance their efficacy. Our findings encourage further preclinical and clinical studies to develop a combination therapy of PIT with conventional anticancer drugs.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Drug Delivery Systems , Immunotherapy/methods , Neoplasms/therapy , Phototherapy/methods , Radionuclide Imaging/methods , Animals , Apoptosis , Cell Proliferation , Combined Modality Therapy , Humans , Indocyanine Green/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...