Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
3.
Diabetologia ; 55(10): 2823-2834, 2012 10.
Article in English | MEDLINE | ID: mdl-22828956

ABSTRACT

AIMS/HYPOTHESIS: A high-fat dietary intake induces obesity and subclinical inflammation, which play important roles in insulin resistance. Recent studies have suggested that increased concentrations of circulating lipopolysaccharide (LPS), promoted by changes in intestinal permeability, may have a pivotal role in insulin resistance. Thus, we investigated the effect of gut microbiota modulation on insulin resistance and macrophage infiltration. METHODS: Swiss mice were submitted to a high-fat diet with antibiotics or pair-feeding for 8 weeks. Metagenome analyses were performed on DNA samples from mouse faeces. Blood was collected to determine levels of glucose, insulin, LPS, cytokines and acetate. Liver, muscle and adipose tissue proteins were analysed by western blotting. In addition, liver and adipose tissue were analysed, blinded, using histology and immunohistochemistry. RESULTS: Antibiotic treatment greatly modified the gut microbiota, reducing levels of Bacteroidetes and Firmicutes, overall bacterial count and circulating LPS levels. This modulation reduced levels of fasting glucose, insulin, TNF-α and IL-6; reduced activation of toll-like receptor 4 (TLR4), c-Jun N-terminal kinase (JNK), inhibitor of κ light polypeptide gene enhancer in B cells, kinase ß (IKKß) and phosphorylated IRS-1 Ser307; and consequently improved glucose tolerance and insulin tolerance and action in metabolically active tissues. In addition, there was an increase in portal levels of circulating acetate, which probably contributed to an increase in 5'-AMP-activated protein kinase (AMPK) phosphorylation in mice. We observed a striking reduction in crown-like structures (CLS) and F4/80(+) macrophage cells in the adipose tissue of antibiotic-treated mice. CONCLUSIONS/INTERPRETATION: These results suggest that modulation of gut microbiota in obesity can improve insulin signalling and glucose tolerance by reducing circulating LPS levels and inflammatory signalling. Modulation also appears to increase levels of circulating acetate, which activates AMPK and finally leads to reduced macrophage infiltration.


Subject(s)
Anti-Bacterial Agents/pharmacology , Diet, High-Fat/adverse effects , Gastrointestinal Tract/microbiology , Insulin/physiology , Metagenome/drug effects , Obesity/physiopathology , Signal Transduction/physiology , AMP-Activated Protein Kinase Kinases , Acetates/blood , Animals , Bacteroides/isolation & purification , Cell Movement/physiology , Cytokines/blood , Disease Models, Animal , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/pathology , Insulin Resistance/physiology , Lipopolysaccharides/blood , Macrophages/pathology , Male , Mice , Obesity/etiology , Obesity/pathology , Protein Kinases/physiology
4.
Diabetologia ; 52(11): 2425-34, 2009 11.
Article in English | MEDLINE | ID: mdl-19730809

ABSTRACT

AIM/HYPOTHESIS: High-dose aspirin treatment improves fasting and postprandial hyperglycaemia in patients with type 2 diabetes, as well as in animal models of insulin resistance associated with obesity and sepsis. In this study, we investigated the effects of aspirin treatment on inducible nitric oxide synthase (iNOS)-mediated insulin resistance and on S-nitrosylation of insulin receptor (IR)-beta, IRS-1 and protein kinase B (Akt) in the muscle of diet-induced obese rats and also in iNos (also known as Nos2)-/- mice on high fat diet. METHODS: Aspirin (120 mg kg-1 day-1 for 2 days) or iNOS inhibitor (L-NIL; 80 mg/kg body weight) were administered to diet-induced obese rats or mice and iNOS production and insulin signalling were investigated. S-nitrosylation of IRbeta/IRS-1 and Akt was investigated using the biotin switch method. RESULTS: iNOS protein levels increased in the muscle of diet-induced obese rats, associated with an increase in S-nitrosylation of IRbeta, IRS-1 and Akt. These alterations were reversed by aspirin treatment, in parallel with an improvement in insulin signalling and sensitivity, as measured by insulin tolerance test and glucose clamp. Conversely, while aspirin reversed the increased phosphorylation of IkappaB kinase beta and c-Jun amino-terminal kinase, as well as IRS-1 serine phosphorylation in diet-induced obese rats and iNos -/- mice on high-fat diet, these alterations were not associated with the improvement of insulin action induced by this drug. CONCLUSIONS/INTERPRETATION: Our data demonstrate that aspirin treatment not only reduces iNOS protein levels, but also S-nitrosylation of IRbeta, IRS-1 and Akt. These changes are associated with improved insulin resistance and signalling, suggesting a novel mechanism of insulin sensitisation evoked by aspirin treatment.


Subject(s)
Aspirin/therapeutic use , Insulin Resistance/physiology , Muscle, Skeletal/physiopathology , Nitric Oxide Synthase Type II/antagonists & inhibitors , Obesity/physiopathology , Animals , Drug Tolerance/physiology , Insulin/physiology , Insulin Receptor Substrate Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Muscle, Skeletal/drug effects , Muscle, Skeletal/enzymology , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase Type II/biosynthesis , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...