Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200234, 2024 May.
Article in English | MEDLINE | ID: mdl-38657185

ABSTRACT

BACKGROUND AND OBJECTIVES: Anti-IgLON5 disease is an autoimmune neurodegenerative disorder characterized by various phenotypes, notably sleep and movement disorders and tau pathology. Although the disease is known to be associated with the neuronal cell adhesion protein IgLON5, the physiologic function of IgLON5 remains elusive. There are conflicting views on whether autoantibodies cause loss of function, activation of IgLON5, or inflammation-associated neuronal damage, ultimately leading to the disease. We generated IgLON5 knockout (-/-) mice to investigate the functions of IgLON5 and elucidate the pathomechanism of anti-IgLON5 disease. METHODS: IgLON5 knockout (-/-) mice underwent behavioral tests investigating motor function, psychiatric function (notably anxiety and depression), social and exploratory behaviors, spatial learning and memory, and sensory perception. Histologic analysis was conducted to investigate tau aggregation in mice with tauopathy. RESULTS: IgLON5-/- mice had poorer performance in the wire hang and rotarod tests (which are tests for motor function) than wild-type mice. Moreover, IgLON5-/- mice exhibited decreased anxiety-like behavior and/or hyperactivity in behavior tests, including light/dark transition test and open field test. IgLON5-/- mice also exhibited poorer remote memory in the contextual fear conditioning test. However, neither sleeping disabilities assessed by EEG nor tau aggregation was detected in the knockout mice. DISCUSSION: These results suggest that IgLON5 is associated with activity, anxiety, motor ability, and contextual fear memory. Comparing the various phenotypes of anti-IgLON5 disease, anti-IgLON5 disease might partially be associated with loss of function of IgLON5; however, other phenotypes, such as sleep disorders and tau aggregation, can be caused by gain of function of IgLON5 and/or neuronal damage due to inflammation. Further studies are needed to elucidate the role of IgLON5 in the pathogenesis of anti-IgLON5 diseases.


Subject(s)
Cell Adhesion Molecules, Neuronal , Mice, Knockout , Phenotype , Animals , Male , Mice , Anxiety/immunology , Autoantibodies/blood , Behavior, Animal/physiology , Cell Adhesion Molecules, Neuronal/deficiency , Disease Models, Animal , Mice, Inbred C57BL , Tauopathies/physiopathology , Tauopathies/immunology , Humans
2.
J Biochem ; 175(3): 225-233, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38102731

ABSTRACT

Protein lipidation is a common co- or post-translational modification that plays a crucial role in regulating the localization, interaction and function of cellular proteins. Dysregulation of lipid modifications can lead to various diseases, including cancer, neurodegenerative diseases and infectious diseases. Therefore, the identification of proteins undergoing lipidation and their lipidation sites should provide insights into many aspects of lipid biology, as well as providing potential targets for therapeutic strategies. Bottom-up proteomics using liquid chromatography/tandem mass spectrometry is a powerful technique for the global analysis of protein lipidation. Here, we review proteomic methods for profiling protein lipidation, focusing on the two major approaches: the use of chemical probes, such as lipid alkyne probes, and the use of enrichment techniques for endogenous lipid-modified peptides. The challenges facing these methods and the prospects for developing them further to achieve a comprehensive analysis of lipid modifications are discussed.


Subject(s)
Lipid Metabolism , Proteomics , Alkynes , Mass Spectrometry , Lipids
3.
Mol Cell Proteomics ; 22(12): 100677, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37949301

ABSTRACT

Proteins can be modified by lipids in various ways, for example, by myristoylation, palmitoylation, farnesylation, and geranylgeranylation-these processes are collectively referred to as lipidation. Current chemical proteomics using alkyne lipids has enabled the identification of lipidated protein candidates but does not identify endogenous lipidation sites and is not readily applicable to in vivo systems. Here, we introduce a proteomic methodology for global analysis of endogenous protein N-terminal myristoylation sites that combines liquid-liquid extraction of hydrophobic lipidated peptides with liquid chromatography-tandem mass spectrometry using a gradient program of acetonitrile in the high concentration range. We applied this method to explore myristoylation sites in HeLa cells and identified a total of 75 protein N-terminal myristoylation sites, which is more than the number of high-confidence myristoylated proteins identified by myristic acid analog-based chemical proteomics. Isolation of myristoylated peptides from HeLa digests prepared with different proteases enabled the identification of different myristoylated sites, extending the coverage of N-myristoylome. Finally, we analyzed in vivo myristoylation sites in mouse tissues and found that the lipidation profile is tissue-specific. This simple method (not requiring chemical labeling or affinity purification) should be a promising tool for global profiling of protein N-terminal myristoylation.


Subject(s)
Proteins , Proteomics , Humans , Animals , Mice , Myristic Acid/chemistry , Myristic Acid/metabolism , HeLa Cells , Proteins/metabolism , Peptides/metabolism , Liquid-Liquid Extraction , Protein Processing, Post-Translational
4.
Sci Rep ; 13(1): 18191, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875604

ABSTRACT

Brain aging causes a progressive decline in functional capacity and is a strong risk factor for dementias such as Alzheimer's disease. To characterize age-related proteomic changes in the brain, we used quantitative proteomics to examine brain tissues, cortex and hippocampus, of mice at three age points (3, 15, and 24 months old), and quantified more than 7000 proteins in total with high reproducibility. We found that many of the proteins upregulated with age were extracellular proteins, such as extracellular matrix proteins and secreted proteins, associated with glial cells. On the other hand, many of the significantly downregulated proteins were associated with synapses, particularly postsynaptic density, specifically in the cortex but not in the hippocampus. Our datasets will be helpful as resources for understanding the molecular basis of brain aging.


Subject(s)
Alzheimer Disease , Proteomics , Mice , Animals , Reproducibility of Results , Brain/metabolism , Alzheimer Disease/metabolism , Hippocampus/metabolism , Extracellular Matrix Proteins/metabolism , Aging/metabolism
5.
Stem Cell Reports ; 18(9): 1854-1869, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37657448

ABSTRACT

The APOE4 genotype is the strongest risk factor for the pathogenesis of sporadic Alzheimer's disease (AD), but the detailed molecular mechanism of APOE4-mediated synaptic impairment remains to be determined. In this study, we generated a human astrocyte model carrying the APOE3 or APOE4 genotype using human induced pluripotent stem cells (iPSCs) in which isogenic APOE4 iPSCs were genome edited from healthy control APOE3 iPSCs. Next, we demonstrated that the astrocytic APOE4 genotype negatively affects dendritic spine dynamics in a co-culture system with primary neurons. Transcriptome analysis revealed an increase of EDIL3, an extracellular matrix glycoprotein, in human APOE4 astrocytes, which could underlie dendritic spine reduction in neuronal cultures. Accordingly, postmortem AD brains carrying the APOE4 allele have elevated levels of EDIL3 protein deposits within amyloid plaques. Together, these results demonstrate the novel deleterious effect of human APOE4 astrocytes on synaptic architecture and may help to elucidate the mechanism of APOE4-linked AD pathogenesis.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Humans , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , Astrocytes , Calcium-Binding Proteins , Cell Adhesion Molecules , Genotype
6.
iScience ; 25(8): 104832, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35992067

ABSTRACT

Abnormally accumulated tau protein aggregates are one of the hallmarks of neurodegenerative diseases, including Alzheimer's disease (AD). In order to investigate proteomic alteration driven by tau aggregates, we implemented quantitative proteomics to analyze disease model mice expressing human MAPT P301S transgene (hTau-Tg) and quantified more than 9,000 proteins in total. We applied the weighted gene co-expression analysis (WGCNA) algorithm to the datasets and explored protein co-expression modules that were associated with the accumulation of tau aggregates and were preserved in proteomes of AD brains. This led us to identify four modules with functions related to neuroinflammatory responses, mitochondrial energy production processes (including the tricarboxylic acid cycle and oxidative phosphorylation), cholesterol biosynthesis, and postsynaptic density. Furthermore, a phosphoproteomics study uncovered phosphorylation sites that were highly correlated with these modules. Our datasets represent resources for understanding the molecular basis of tau-induced neurodegeneration, including AD.

7.
Proteomics ; 22(4): e2100144, 2022 02.
Article in English | MEDLINE | ID: mdl-34714599

ABSTRACT

We developed peptide probes containing a non-hydrolyzable phosphotyrosine mimetic, 4-[difluoro(phosphono)methyl]-L-phenylalanine (F2 Pmp) for the enrichment of protein tyrosine phosphatases (PTPs). We found that different F2 Pmp probes can enrich different PTPs, depending on the probe sequence. Furthermore, proteins containing a Src homology 2 (SH2) domain were enriched together. Importantly, probes containing phosphotyrosine instead of F2 Pmp failed to enrich PTPs due to dephosphorylation during the pulldown step. This enrichment approach using peptides containing F2 Pmp could be a generic tool for tyrosine phosphatome analysis without the use of antibodies.


Subject(s)
Protein Tyrosine Phosphatases , src Homology Domains , Amino Acid Sequence , Peptides/chemistry , Phosphotyrosine/chemistry , Protein Tyrosine Phosphatases/metabolism , Tyrosine/chemistry
8.
STAR Protoc ; 2(3): 100682, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34377995

ABSTRACT

Characterization of protein termini is essential for understanding how the proteome is generated through biological processes such as post-translational proteolytic events. Here, we introduce a practical protocol for terminomics to achieve simple and sensitive N- and C-terminal peptide enrichment. We apply it to the terminome analysis of culture supernatants of a human cancer cell line for the purpose of identifying ectodomain shedding substrate cleavage sites with 10 µg protein per sample. For complete details on the use and execution of this protocol, please refer to Tsumagari et al. (2021).


Subject(s)
Isotope Labeling/methods , Protein Domains/physiology , Proteomics/methods , Cell Line, Tumor/metabolism , Humans , Peptide Hydrolases/metabolism , Peptides/chemistry , Protein Processing, Post-Translational/physiology , Proteolysis/drug effects , Proteome/analysis , Tandem Mass Spectrometry/methods
9.
Biochem Biophys Res Commun ; 563: 60-65, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34062387

ABSTRACT

Reversible acylation of lysine ε-amino groups, e.g., acetylation, succinylation, maronylation, and myristoylation, is involved in basic physiological processes such as metabolism, cell signaling and aging. In this study, we developed a novel enrichment method for acylated peptides without the use of antibodies, in which endogenously acylated peptides are deacylated by recombinant lysine deacylases based on the enzyme-substrate relationship and enriched by N-hydroxysuccinimidyl chemistry for identification of the acylated sites by nanoscale liquid chromatography-tandem mass spectrometric analysis. To demonstrate the validity of this acylomics platform, we used it to identify acylated sites on chemically acylated model protein samples. We also applied it to the nuclei of HeLa cells to identify endogenous acylated sites.


Subject(s)
Carboxy-Lyases/metabolism , Lysine/metabolism , Peptides/metabolism , Acylation , Carboxy-Lyases/chemistry , HeLa Cells , Humans , Lysine/chemistry , Peptides/chemistry , Tumor Cells, Cultured
10.
iScience ; 24(4): 102259, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33796845

ABSTRACT

Ectodomain shedding is a proteolytic process that regulates the levels and functions of membrane proteins. Dysregulated shedding is linked to severe diseases, including cancer and Alzheimer's disease. However, the exact cleavage sites of shedding substrates remain largely unknown. Here, we explore the landscape of ectodomain shedding by generating large-scale, cell-type-specific maps of shedding cleavage sites. By means of N- and C-terminal peptide enrichment and quantitative mass spectrometry, we quantified protein termini in the culture media of 10 human cell lines and identified 489 cleavage sites on 163 membrane proteins whose proteolytic terminal fragments are downregulated in the presence of a broad-spectrum metalloprotease inhibitor. A major fraction of the presented cleavage sites was identified in a cell-type-specific manner and mapped onto receptors, cell adhesion molecules, and protein kinases and phosphatases. We confidently identified 86 cleavage sites as metalloprotease substrates by means of knowledge-based scoring.

11.
J Biol Chem ; 296: 100673, 2021.
Article in English | MEDLINE | ID: mdl-33865858

ABSTRACT

Escherichia coli RseP, a member of the site-2 protease family of intramembrane proteases, is involved in the activation of the σE extracytoplasmic stress response and elimination of signal peptides from the cytoplasmic membrane. However, whether RseP has additional cellular functions is unclear. In this study, we used mass spectrometry-based quantitative proteomic analysis to search for new substrates that might reveal unknown physiological roles for RseP. Our data showed that the levels of several Fec system proteins encoded by the fecABCDE operon (fec operon) were significantly decreased in an RseP-deficient strain. The Fec system is responsible for the uptake of ferric citrate, and the transcription of the fec operon is controlled by FecI, an alternative sigma factor, and its regulator FecR, a single-pass transmembrane protein. Assays with a fec operon expression reporter demonstrated that the proteolytic activity of RseP is essential for the ferric citrate-dependent upregulation of the fec operon. Analysis using the FecR protein and FecR-derived model proteins showed that FecR undergoes sequential processing at the membrane and that RseP participates in the last step of this sequential processing to generate the N-terminal cytoplasmic fragment of FecR that participates in the transcription of the fec operon with FecI. A shortened FecR construct was not dependent on RseP for activation, confirming this cleavage step is the essential and sufficient role of RseP. Our study unveiled that E. coli RseP performs the intramembrane proteolysis of FecR, a novel physiological role that is essential for regulating iron uptake by the ferric citrate transport system.


Subject(s)
Cell Membrane/metabolism , Endopeptidases/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Ferric Compounds/metabolism , Gene Expression Regulation, Bacterial , Membrane Proteins/metabolism , Membrane Transport Proteins/metabolism , Sigma Factor/metabolism , Biological Transport , Endopeptidases/genetics , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli Proteins/genetics , Membrane Proteins/genetics , Membrane Transport Proteins/genetics , Sigma Factor/genetics
12.
Nat Commun ; 8(1): 1423, 2017 11 10.
Article in English | MEDLINE | ID: mdl-29123098

ABSTRACT

We and others showed that ATP11A and ATP11C, members of the P4-ATPase family, translocate phosphatidylserine (PS) and phosphatidylethanolamine from the exoplasmic to the cytoplasmic leaflets at the plasma membrane. PS exposure on the outer leaflet of the plasma membrane in activated platelets, erythrocytes, and apoptotic cells was proposed to require the inhibition of PS-flippases, as well as activation of scramblases. Although ATP11A and ATP11C are cleaved by caspases in apoptotic cells, it remains unclear how PS-flippase activity is regulated in non-apoptotic cells. Here we report that the PS-flippase ATP11C, but not ATP11A, is sequestered from the plasma membrane via clathrin-mediated endocytosis upon Ca2+-mediated PKC activation. Importantly, we show that a characteristic di-leucine motif (SVRPLL) in the C-terminal cytoplasmic region of ATP11C becomes functional upon PKC activation. Moreover endocytosis of ATP11C is induced by Ca2+-signaling via Gq-coupled receptors. Our data provide the first evidence for signal-dependent regulation of mammalian P4-ATPase.


Subject(s)
Adenosine Triphosphatases/metabolism , Membrane Transport Proteins/metabolism , Protein Kinase C-alpha/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Amino Acid Motifs , Amino Acid Sequence , Animals , Calcium/metabolism , Calcium Signaling , Cell Line , Down-Regulation , Endocytosis/drug effects , Enzyme Activation , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , HeLa Cells , Humans , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Mice , Phosphorylation , Serine/chemistry , Tetradecanoylphorbol Acetate/pharmacology
13.
Genes Cells ; 22(2): 237-244, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28084684

ABSTRACT

Many membrane proteins are subjected to limited proteolyses at their juxtamembrane regions, processes referred to as ectodomain shedding. Shedding ectodomains of membrane-bound ligands results in activation of downstream signaling pathways, whereas shedding those of cell adhesion molecules causes loss of cell-cell contacts. Secreted proteomics (secretomics) using high-resolution mass spectrometry would be strong tools for both comprehensive identification and quantitative measurement of membrane proteins that undergo ectodomain shedding. In this study, to elucidate the ectodomain shedding events that occur during neuronal differentiation, we establish a strategy for quantitative secretomics of glycoproteins released from differentiating neuroblastoma cells into culture medium with or without GM6001, a broad-spectrum metalloprotease inhibitor. Considering that most of transmembrane and secreted proteins are N-glycosylated, we include a process of N-glycosylated peptides enrichment as well as isotope tagging in our secretomics workflow. Our results show that differentiating N1E-115 neurons secrete numerous glycosylated polypeptides in metalloprotease-dependent manners. They are derived from cell adhesion molecules such as NCAM1, CADM1, L1CAM, various transporters and receptor proteins. These results show the landscape of ectodomain shedding and other secretory events in differentiating neurons and/or during axon elongation, which should help elucidate the mechanism of neurogenesis and the pathogenesis of neurological disorders.


Subject(s)
Cell-Derived Microparticles/metabolism , Glycoproteins/metabolism , Membrane Proteins/metabolism , Neurons/cytology , ADAM Proteins/metabolism , Animals , Cell Adhesion Molecule-1 , Cell Adhesion Molecules/metabolism , Cell Differentiation/physiology , Cell Membrane/metabolism , Cell-Derived Microparticles/physiology , Cells, Cultured , Humans , Immunoglobulins/metabolism , Metalloproteases/metabolism , Neurons/metabolism , Proteomics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...