Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Cancer Invest ; 32(6): 241-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24762082

ABSTRACT

Some cancer cells depend on glutamine despite of pronounced glycolysis. We examined the glutamine metabolism in leukemia cells, and found that HL-60 cells most depended on glutamine in the 4 acute myelogenous leukemia (AML) cell lines examined: growth of HL-60 cells was most suppressed by glutamine deprivation and by inhibition of glutaminolysis, which was rescued by tricarboxylic acid (TCA) cycle intermediate, oxaloacetic acid. Glutamine is also involved in antioxidant defense function by increasing glutathione. Glutamine deprivation suppressed the glutathione content and elevated reactive oxygen species most evidently in HL-60 cells. Glutamine metabolism might be a therapeutic target in some leukemia.


Subject(s)
Citric Acid Cycle/genetics , Energy Metabolism , Glutamine/metabolism , Leukemia, Myeloid, Acute/metabolism , Cell Line, Tumor , Glucose/metabolism , Glutamine/genetics , Glutathione/metabolism , Glycolysis , Humans , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , Molecular Targeted Therapy , Oxidation-Reduction
2.
BMC Cancer ; 14: 76, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24506813

ABSTRACT

BACKGROUND: Like normal hematopoietic stem cells, leukemia cells proliferate in bone marrow, where oxygen supply is limited. However, the growth and energy metabolism of leukemia cells under hypoxia have not been well understood. Although it has been known that reactive oxygen species (ROS) is generated under hypoxic conditions, normal and leukemia stem cells were characterized by relatively low levels of ROS. Roles of ROS on leukemia cells under hypoxia also have not been well understood. METHODS: Four Leukemia cell lines were cultured under normoxia (21% O2) or hypoxia (1% O2), where NB4 and THP-1 were most extensively studied. To evaluate energy metabolism, we estimated whole cell number or apoptotic cells with or without a glycolysis inhibitor or an oxidative phosphorylation (OXPHOS) inhibitor. Glucose consumption and lactate production were also measured. To evaluate oxidative stress in hypoxic condition, the ROS level and GSH (reduced glutathione) / GSSG (oxidized glutathione) ratio was measured. In addition, pyruvate dehydrogenase kinase 1 (PDK1) and cytochrome c oxidase subunit 4 (COX4) were examined by western blotting or RT-PCR. RESULTS: NB4, which grows well under normoxia depending on glycolysis, demonstrated prominent apoptosis and growth suppression after 48 hours culture under hypoxia. NB4 cells cultured under hypoxia showed significantly increased ROS. Culture with a ROS scavenger resulted in decrease of apoptotic cell death of NB4 under hypoxia. NB4 cells cultured for longer period (7 days) under hypoxia did not come to extinction, but grew slowly by upregulating GSH synthesis to protect from ROS generated in hypoxic condition. By contrast, THP-1, which largely depends on OXPHOS in mitochondria under normoxia, demonstrated more growth under hypoxia by changing metabolism from OXPHOS to glycolysis through upregulating PDK1. Moreover, THP-1 avoided ROS generation by substituting COX 4 subunit (from COX 4-1 to COX 4-2) through upregulation of LON, a mitochondrial protease under hypoxia. CONCLUSIONS: We showed that leukemia cells survive and adapt to the hypoxic condition through various pathways. Our results will help understanding energy metabolism of leukemia cells and creating novel therapeutics.


Subject(s)
Energy Metabolism , Leukemia/metabolism , Oxidative Stress , Adaptation, Physiological , Apoptosis , Cell Hypoxia , Cell Line, Tumor , Cell Proliferation , Dose-Response Relationship, Drug , Electron Transport Complex IV/metabolism , Energy Metabolism/drug effects , Free Radical Scavengers/pharmacology , Glucose/metabolism , Glutathione/metabolism , Glycolysis , Humans , Lactic Acid/metabolism , Leukemia/pathology , Oxidative Phosphorylation , Oxidative Stress/drug effects , Protease La/metabolism , Protein Serine-Threonine Kinases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Reactive Oxygen Species/metabolism , Time Factors
3.
Leuk Res ; 37(9): 1132-6, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23806233

ABSTRACT

We examined the effects of diet nutrients on xenotransplanted leukemia cells, THP-1 or NB4. THP-1 tumors showed more growth when fed with high fat diet, while NB4 tumors grew more with high carbohydrate diet. Then, administration of 2-deoxyglucose (a glycolysis inhibitor) showed a significant antitumor effect on both tumors: NB4 tumor showed large necrotic areas, while THP-1 tumor did not, but had augmented expression of enzymes for fatty acid oxidation. 2-Deoxyglucose inhibited the growth of NB4 by cell death because main energy producing pathway (glycolysis) was abolished, while 2-deoxyglucose slowed the growth of THP-1 by shifting energy metabolism to fatty acid ß-oxidation.


Subject(s)
Antimetabolites/pharmacology , Cell Proliferation , Deoxyglucose/pharmacology , Diet , Dietary Supplements , Leukemia, Experimental/drug therapy , Animals , Blotting, Western , Energy Metabolism/drug effects , Female , Glycolysis/drug effects , Humans , Immunoenzyme Techniques , Leukemia, Experimental/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation , Transplantation, Heterologous , Tumor Cells, Cultured
4.
Oncol Rep ; 29(5): 2053-7, 2013 May.
Article in English | MEDLINE | ID: mdl-23440281

ABSTRACT

The shift in energy metabolism from oxidative phosphorylation to glycolysis can serve as a target for the inhibition of cancer growth. Here, we examined the metabolic changes induced by 2-deoxyglucose (2-DG), a glycolysis inhibitor, in leukemia cells by metabolome analysis. NB4 cells mainly utilized glucose as an energy source by glycolysis and oxidative phosphorylation in mitochondria, since metabolites in the glycolytic pathway and in the tricarboxylic acid (TCA) cycle were significantly decreased by 2-DG. In THP-1 cells, metabolites in the TCA cycle were not decreased to the same extent by 2-DG as in NB4 cells, which indicates that THP-1 utilizes energy sources other than glucose. TCA cycle metabolites in THP-1 cells may be derived from acetyl-CoA by fatty acid ß-oxidation, which was supported by abundant detection of carnitine and acetylcarnitine in THP-1 cells. 2-DG treatment increased the levels of pentose phosphate pathway (PPP) metabolites and augmented the generation of NADPH by glucose-6-phosphate dehydrogenase. An increase in NADPH and upregulation of glutathione synthetase expression resulted in the increase in the reduced form of glutathione by 2-DG in NB4 cells. We demonstrated that a combination of 2-DG and inhibition of PPP by dehydroepiandrosterone (DHEA) effectively suppressed the growth of NB4 cells. The replenishment of the TCA cycle by fatty acid oxidation by carnitine palmitoyltransferase in THP-1 cells, treated by 2-DG, might be regulated by AMPK, as the combination of 2-DG and inhibition of AMPK by compound C potently suppressed the growth of THP-1 cells. Although 2-DG has been effective in preclinical and clinical studies, this treatment has not been fully explored due to concerns related to potential toxicities such as brain toxicity at high doses. We demonstrated that a combination of 2-DG and DHEA or compound C at a relatively low concentration effectively inhibits the growth of NB4 and THP-1 cells, respectively. These observations may aid in the identification of appropriate combinations of metabolic inhibitors at low concentrations which do not cause toxicities.


Subject(s)
Deoxyglucose/pharmacology , Energy Metabolism/drug effects , Leukemia/metabolism , AMP-Activated Protein Kinases/metabolism , Acetyl Coenzyme A/metabolism , Carnitine O-Palmitoyltransferase/metabolism , Cell Line, Tumor , Citric Acid Cycle/drug effects , Dehydroepiandrosterone/pharmacology , Fatty Acids/metabolism , Glucose/metabolism , Glucosephosphate Dehydrogenase/metabolism , Glutathione/metabolism , Glycolysis/drug effects , Humans , Metabolome/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , NADP/metabolism , Oxidation-Reduction/drug effects , Oxidative Phosphorylation/drug effects , Pentose Phosphate Pathway/drug effects , Pentose Phosphate Pathway/physiology , Pyrazoles/pharmacology , Pyrimidines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL