Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 22(1): 519-24, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24515012

ABSTRACT

Poor thermal stability has remained a severe obstacle for practical applications of optical fiber amplifiers based on quantum dots (QDs). We demonstrate that thermal stability at elevated temperatures can be achieved by using oleic-acid-capped QDs. Optical fiber amplifiers using oleic-acid-capped QDs for the gain medium exhibited stable gain of more than 5 dB at 1550 nm between 25 °C and 50 °C that did not degrade upon cooling. In contrast, fiber amplifiers employing oleylamine-capped QDs exhibited reduced gain when heated and subsequently cooled.

2.
Acc Chem Res ; 46(8): 1731-9, 2013 Aug 20.
Article in English | MEDLINE | ID: mdl-23618394

ABSTRACT

A heterogeneous catalyst in industry consists of nanoparticles with variable crystallite sizes, shapes, and compositions. Its catalytic performance (activity, selectivity, and durability) derives from surface chemistry of catalyst nanoparticles during catalysis. However, the surface chemistry of the catalyst particles during catalysis, termed in-situ information, is a "black box" because of the challenges in characterizing the catalysts during catalysis. The lack of such in-situ information about catalysts has limited the understanding of catalytic mechanisms and the development of catalysts with high selectivity and activity. The challenges in understanding heterogeneous catalysis include measurement of reaction kinetics, identification of reaction intermediates, bridging pressure gap and materials gap. The pressure gap is the difference in surface structure and chemistry between a catalyst during catalysis and under an ultrahigh vacuum (UHV) condition. The materials gap represents the difference between the structural and compositional complexity of industrial catalysts and the well-defined surface of model catalysts of metals or oxides. Development of in-situ characterization using electron spectroscopy and electron microscopy in recent decades has made possible studies of surface chemistry and structure of nanocatalysts under reaction conditions or during catalysis at near ambient pressure. In this Account, we review the new chemistries and structures of nanocatalysts during reactions revealed with in-situ analytical techniques. We discuss changes observed during catalysis including the evolution of composition, oxidation state, phase, and geometric structure of the catalyst surface, and the sintering of catalysts. These surface chemistries and structures have allowed researchers to build a correlation between surface chemistry and structure of active nanocatalysts and their corresponding catalytic performances. Such a correlation provides critical insights for understanding catalysis, optimization of existing nanocatalysts, and development of new nanocatalysts with high activity and selectivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...