Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 211(10): 1494-1505, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37747298

ABSTRACT

The differentiation of neural crest (NC) cells into various cell lineages contributes to the formation of many organs, including the thymus. In this study, we explored the role of NC cells in thymic T cell development. In double-transgenic mice expressing NC-specific Cre and the Cre-driven diphtheria toxin receptor, plasma noradrenaline and adrenaline levels were significantly reduced, as were thymic T cell progenitors, when NC-derived cells were ablated with short-term administration of diphtheria toxin. Additionally, yellow fluorescent protein+ NC-derived mesenchymal cells, perivascular cells, and tyrosine hydroxylase+ sympathetic nerves in the thymus significantly decreased. Furthermore, i.p. administration of 6-hydroxydopamine, a known neurotoxin for noradrenergic neurons, resulted in a significant decrease in thymic tyrosine hydroxylase+ nerves, a phenotype similar to that of depleted NC-derived cells, whereas administration of a noradrenaline precursor for ablating NC-derived cells or sympathetic nerves rarely rescued this phenotype. To clarify the role of NC-derived cells in the adult thymus, we transplanted thymus into the renal capsules of wild-type mice and observed abnormal T cell development in lethally irradiated thymus with ablation of NC-derived cells or sympathetic nerves, suggesting that NC-derived cells inside and outside of the thymus contribute to T cell development. In particular, the ablation of NC-derived mesenchymal cells in the thymus decreases the number of thymocytes and T cell progenitors. Overall, ablation of NC-derived cells, including sympathetic nerves, in the thymus leads to abnormal T cell development in part by lowering plasma noradrenalin levels. This study reveals that NC-derived cells including mesenchymal cells and sympathetic nerves within thymus regulate T cell development.


Subject(s)
Neural Crest , Norepinephrine , Mice , Animals , Tyrosine 3-Monooxygenase , Cell Differentiation , Mice, Transgenic , Thymus Gland
2.
J Immunol ; 198(1): 156-169, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27872209

ABSTRACT

Hematopoietic stem cells and their lymphoid progenitors are supported by the bone marrow (BM) microenvironmental niches composed of various stromal cells and Schwann cells and sympathetic nerve fibers. Although neural crest (NC) cells contribute to the development of all the three, their function in BM is not well understood. In this study, NC-derived cells were ablated with diphtheria toxin in double-transgenic mice expressing NC-specific Cre and Cre-driven diphtheria toxin receptor with yellow fluorescent protein reporter. We found that yellow fluorescent protein-expressing, NC-derived nonhematopoietic cells in BM expressed hematopoietic factors Cxcl12 and stem cell factor The ablation of NC-derived cells led to a significant decrease in B cell progenitors but not in hematopoietic stem cells or myeloid lineage cells in BM. Interestingly, plasma noradrenaline was markedly decreased in these mice. The i.p. administration of 6-hydroxydopamine, a known neurotoxin for noradrenergic neurons, led to a similar phenotype, whereas the administration of a noradrenaline precursor in NC-ablated mice partially rescued this phenotype. Additionally, the continuous administration of adrenergic receptor ß antagonists partially decreased the number of B cell progenitors while preserving B lymphopoiesis in vitro. Taken together, our results indicate that NC-derived cell depletion leads to abnormal B lymphopoiesis partially through decreased plasma noradrenaline, suggesting this as a novel mechanism regulated by molecules released by the sympathetic neurons.


Subject(s)
B-Lymphocytes/cytology , Lymphopoiesis/physiology , Neural Crest/cytology , Norepinephrine/blood , Animals , Cell Differentiation , Cell Separation , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Immunohistochemistry , Mice , Mice, Transgenic , Neural Crest/immunology , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL