Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38835236

ABSTRACT

The unique attributes of hydrophilicity, expansive surface groups, remarkable flexibility, and superior conductivity converge in MXene, a pioneering 2D material. Owing to MXene's exceptional properties, diverse strategies have been explored to enhance its characteristics. Janus MXene and stress-strain response considerations represent the primary avenues of interest today. In this study, we investigated the Janus MXene structure under biaxial stress using first-principles calculations. The most stable configuration of Janus MoWC MXene identified in our analysis exhibits an atomic arrangement known as the hexagonal (2H) phase. Subsequently, we examined the mechanical and electronic properties of 2H-MoWC when subjected to biaxial strain. Our findings indicate that the 2H phase of Janus MoWC MXene demonstrates superior strength compared to the tetragonal (1T) phase. Analysis of the ELF of the 2H-MoWC structure unveiled that the robust C-C bond within the material is the underlying factor enabling the 2H phase to withstand a maximum of 9% tensile strain. Furthermore, we demonstrate that 2H-MoWC is a superconductor with the superconducting temperature (Tc) of 1.6 K, and the superconductivity of 2H phase can be enhanced by biaxial strain with the Tc reaching 7 K. This study offers comprehensive insights into the properties of Janus MoWC monolayer under biaxial stress, positioning it as a promising candidate for 2D straintronic applications.

2.
Sci Rep ; 13(1): 20295, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985841

ABSTRACT

Investigating superconductivity represents one of the most significant phenomena in the field of condensed matter physics. Our simulations aim to elucidate the structures in the metallic state of Mg1-xMoxB2, which is essential for predicting their superconducting properties. By employing a first-principle cluster expansion and particle-swarm optimization, we have predicted the structures of Mg1-xMoxB2 ternary alloys, including Mg0.667Mo0.333B2, Mg0.5Mo0.5B2, and Mg0.333Mo0.667B2, and have determined their thermodynamically stable configurations under both atmospheric and high-pressure conditions. To investigate the potential for superconductivity in these structures, we have conducted a detailed examination of electronic properties that are pertinent to determining the superconducting state. Regarding superconducting properties, Mg0.333Mo0.667B2 exhibits superconductivity with a critical temperature (Tc) of 7.4 K at ambient pressure. These findings suggest that the theoretically predicted structures in Mg/Mo-substituted metal borides could play a significant role in synthesis and offer valuable insights into superconducting materials.

3.
Chemosphere ; 341: 139982, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37648169

ABSTRACT

Carbon nanotubes (CNTs) composed of bimetallic nickel-palladium (NiPd) nanoparticles encapsulated in graphitic carbon shells (NdPd@CNT) are prepared by the chemical vapour deposition method using waste polyethylene terephthalate (PET) plastic carbon sources and NiPd-decorated carbon sheets (NiPd@C) catalyst. The characterization results reveal that the face-centered cubic crystalline (fcc)-structured NiPd bimetallic alloy nanoparticles are encased by thin carbon nanotubes. The bimetallic synergism of NiPd nanoparticles actuates the outer CNT layers and accelerates the electrical conductivity, stimulating the electrochemical activity toward an effective hydrogen evolution reaction (HER). By virtue of the collective individualities of highly conductive aligned carbon walls and bimetallic active sites, the NiPd@CNT-equipped HER delivers a minimum overpotential of 87 mV and a Tafel slope value of 95 mV dec-1. The existing intact contact between NiPd and CNT facilitates continuous electron and ion transportation and firm stability toward long-term hydrogen production in HER. Notably, the NiPd@CNT reported here produces excellent electrochemical activity with minimal charge transference resistance, substantiating the efficacy of NiPd@CNT for futuristic green hydrogen production.


Subject(s)
Hydrogen , Nanotubes, Carbon , Nickel , Palladium , Gases
4.
RSC Adv ; 12(41): 26808-26814, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36320850

ABSTRACT

Lanthanum hydride compounds LaH3 become stabilized by yttrium substitution under the influence of moderate pressure. Novel materials with a wide range of changes in the structural properties as a function of hydrogen are investigated by means of the first-principles cluster expansion technique. Herein, the new compounds La1-x Y x H3, where 0 ≤ x ≤ 1, are determined to adopt tetragonal structures under high-pressure with the compositions La0.8Y0.2H3, La0.75Y0.25H3, and La0.5Y0.5H3. The corresponding thermodynamic and dynamical stabilities of the predicted phases are confirmed by a series of calculations including, for example, phonon dispersion, electronic band structure, and other electronic characteristics. According to the band characteristics, all hydrides except that of I41/amd symmetry are semiconductors. The tetragonal La0.5Y0.5H3 phase is found to become semi-metallic, as confirmed by adopting the modified Becke-Johnson exchange potential. The physical origins of the semiconductor properties in these stable hydrides are discussed in detail. Our findings provide a deeper insight into this class of rare-earth ternary hydrides.

5.
ACS Omega ; 7(32): 28190-28197, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35990471

ABSTRACT

Motivated by Matthias' sixth rule for finding new superconducting materials in a cubic symmetry, we report the cluster expansion calculations, based on the density functional theory, of the superconducting properties of Al0.5Zr0.5H3. The Al0.5Zr0.5H3 structure is thermodynamically and dynamically stable up to at least 200 GPa. The structural properties suggest that the Al0.5Zr0.5H3 structure is a metallic. We calculate a superconducting transition temperature using the Allen-Dynes modified McMillan equation and anisotropic Migdal-Eliashberg equation. As result of this, the anisotropic Migdal-Eliashberg equation demonstrated that it exhibits superconductivity under high pressure with relatively high-T c of 55.3 K at a pressure of 100 GPa among a family of simple cubic structures. Therefore, these findings suggest that superconductivity could be observed experimentally in Al0.5Zr0.5H3.

6.
Sci Rep ; 12(1): 6700, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35468975

ABSTRACT

We explored the phase stability of ternary pentahydride [Formula: see text] based on the first principles evolutionary algorithm. Here, we successfully search for a candidate structure up to 500 GPa. As a consequence, the possible stable structure of [Formula: see text] is found be to a monoclinic structure with space group Pm at a pressure of 50 GPa. Moreover, the orthorhombic structure with a space group of Cmcm is found to be thermodynamically stable above 316 GPa. With this, the Kohn-Sham equation plays a crucial role in determining the structural stability and the electronic structure. Therefore, its structural stability is discussed in term of electronic band structure, Fermi surface topology, and dynamic stability. With these results, we propose that the superconducting transition temperature ([Formula: see text]) of Cmcm structure is estimated to be 50 K at 450 GPa. This could be implied that the proposed Cmcm structure may be emerging as a new class of superconductive ternary metal pentahydride. Our findings pave the way for further studies on an experimental observation that can be synthesized at high pressure.

7.
Sci Rep ; 11(1): 16403, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34385486

ABSTRACT

Hafnium hydrogen compounds have recently become the vibrant materials for structural prediction at high pressure, from their high potential candidate for high-temperature superconductors. In this work, we predict [Formula: see text] by exploiting the evolutionary searching. A high-pressure phase adopts a sodalite-like clathrate structure, showing the body-centered cubic structure with a space group of [Formula: see text]. The first-principles calculations have been used, including the zero-point energy, to investigate the probable structures up to 600 GPa, and find that the [Formula: see text] structure is thermodynamically and dynamically stable. This remarkable result of the [Formula: see text] structure shows the van Hove singularity at the Fermi level by determining the density of states. We calculate a superconducting transition temperature ([Formula: see text]) using Allen-Dynes equation and demonstrated that it exhibits superconductivity under high pressure with relatively high-[Formula: see text] of 132 K.

8.
Sci Rep ; 11(1): 15215, 2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34312409

ABSTRACT

By means of first-principles cluster expansion, anisotropic superconductivity in the transition metal dichalcogenide Nb(Se[Formula: see text]S[Formula: see text])[Formula: see text] forming a van der Waals (vdW) layered structure is observed theoretically. We show that the Nb(Se[Formula: see text]S[Formula: see text])[Formula: see text] vdW-layered structure exhibits minimum ground-state energy. The Pnnm structure is more thermodynamically stable when compared to the 2H-NbSe[Formula: see text] and 2H-NbS[Formula: see text] structures. The characteristics of its phonon dispersions confirm its dynamical stability. According to electronic properties, i.e., electronic band structure, density of states, and Fermi surface indicate metallicity of Nb(Se[Formula: see text]S[Formula: see text])[Formula: see text]. The corresponding superconductivity is then investigated through the Eliashberg spectral function, which gives rise to a superconducting transition temperature of 14.5 K. This proposes a remarkable improvement of superconductivity in this transition metal dichalcogenide.

9.
Sci Rep ; 11(1): 4079, 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33602984

ABSTRACT

Regarded as doped binary hydrides, ternary hydrides have recently become the subject of investigation since they are deemed to be metallic under pressure and possibly potentially high-temperature superconductors. Herein, the candidate structure of Li5MoH11 is predicted by exploiting the evolutionary searching. Its high-pressure phase adopts a hexagonal structure with P63/mcm space group. We used first-principles calculations including the zero-point energy to investigate the structures up to 200 GPa and found that the P63cm structure transforms into the P63/mcm structure at 48 GPa. Phonon calculations confirm that the P63/mcm structure is dynamically stable. Its stability is mainly attributed to the isostructural second-order phase transition. Our calculations reveal the electronic topological transition displaying an isostructural second-order phase transition at 160 GPa as well as the topology of its Fermi surfaces. We used the projected crystal orbital Hamilton population (pCOHP) to examine the nature of the chemical bonding and demonstrated that the results obtained from the pCOHP calculation are associated with the electronic band structure and electronic localized function.

10.
Sci Rep ; 10(1): 21138, 2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33273554

ABSTRACT

A microscopic viewpoint of structure and dipolar configurations in hybrid organic-inorganic perovskites is crucial to understanding their stability and phase transitions. The necessity of incorporating dispersion interactions in the state-of-the-art density functional theory for the [Formula: see text] perovskite (MAPI) is demonstrated in this work. Some of the vdW methods were selected to evaluate the corresponding energetics properties of the cubic MAPI with various azimuthally rotated MA organic cation orientations. The highest energy barrier obtained from PBEsol reaches 18.6 meV/MA-ion, which is equivalent to 216 K, the temperature above which the MA cations randomly reorient. Energy profiles calculated by vdW incorporated functionals, on the other hand, exhibit various distinct patterns. The well-developed vdW-DF-cx functional was selected, thanks to its competence, to evaluate the total energies of different MA dipolar configurations in [Formula: see text] cubic supercell of MAPI under pressures. The centrosymmetric arrangement of the MA cations that provide zero total dipole moment configuration results in the lowest energy state profiles under pressure, while the non-centrosymmetric scheme displays a unique behaviour. Despite being overall unpolarised, the latter calculated with PBEsol leads to a rigid shift of energy from the profile obtained from the dispersive vdW-DF-cx functional. It is noteworthy that the energy profile responsible for the maximum polarised configuration nevertheless takes the second place in total energy under pressure.

11.
Sci Rep ; 10(1): 18090, 2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33093540

ABSTRACT

We have analyzed the compositions of boron-carbon system, in which the [Formula: see text] compound is identified as structural stability at high pressure. The first-principles calculation is used to identify the phase diagram, electronic structure, and superconductivity of [Formula: see text]. Our results have demonstrated that the [Formula: see text] is thermodynamically stable in the diamond-like [Formula: see text] structure at a pressure above 244 GPa, and under temperature also. Feature of chemical bonds between B and C atoms is presented using the electron localization function. The strong chemical bonds in diamond-like [Formula: see text] structure are covalent bonds, and it exhibits the s-p hybridization under the pressure compression. The Fermi surface shape displays the large sheet, indicating that the diamond-like [Formula: see text] phase can achieve a high superconducting transition temperature ([Formula: see text]). The outstanding property of [Formula: see text] at 250 GPa has manifested very high-[Formula: see text] of superconductivity as 164 K, indicating that the carbon-rich system can induce the high-[Formula: see text] value as well.

12.
Sci Rep ; 9(1): 2459, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30792456

ABSTRACT

The 'missing Xe paradox' is one of the phenomena at the Earth's atmosphere. Studying the 'missing Xe paradox' will provide insights into a chemical reaction of Xe with C. We search the ground-state structure candidates of xenon carbides using the Universal Structure Predictor: Evolutionary Xtallography (USPEX) code, which has been successfully applied to a variety of systems. We predict that XeC2 is the most stable among the convex hull. We find that the I[Formula: see text]2m structure of XeC2 is the semiconducting phase. Accurate electronic structures of tetragonal XeC2 have been calculated using a hybrid density functionals HSE06, which gives larger more accurate band gap than a GGA-PBE exchange-correlation functional. Specifically, we find that the I[Formula: see text]2m structure of XeC2 is a dynamically stable structure at high pressure. We also predict that the P6/mmm structure of XeC2 is the superconducting phase with a critical temperature of 38 K at 200 GPa. The ground-state structure of xenon carbides is of critical importance for understanding in the missing Xe. We discuss the inference of the stable structures of XeC2. The accumulation of electrons between Xe and C led to the stability by investigating electron localization function (ELF).

13.
RSC Adv ; 9(53): 30964-30975, 2019 Sep 26.
Article in English | MEDLINE | ID: mdl-35529358

ABSTRACT

High-pressure phase stabilities up to 600 K and the related properties of Na2O2 under pressures up to 300 GPa were investigated using first-principles calculations and the quasi-harmonic approximation. Two high-pressure phases of Na2O2 that are thermodynamically and dynamically stable were predicted consisting of the Amm2 (distorted P6̄2m) and the P21/c structures, which are stable at low temperature in the pressure range of 0-22 GPa and 22-28 GPa, respectively. However, the P6̄2m and Pbam structures become the most stable instead of the Amm2 and P21/c structures at the elevated temperatures, respectively. Interestingly, the softening of some phonon modes and the decreasing of some elastic stiffnesses in the Amm2 structure were also predicted in the pressure ranges of 2-3 GPa and 9-10 GPa. This leads to the decreasing of phonon free energy and the increasing of the ELF value in the same pressure ranges. The HSE06 band gaps suggest that all phases are insulators, and they increase with increasing pressure. Our findings provide the P-T phase diagram of Na2O2, which may be useful for investigating the thermodynamic properties and experimental verification.

14.
Sci Rep ; 8(1): 5278, 2018 Mar 27.
Article in English | MEDLINE | ID: mdl-29588486

ABSTRACT

Ab initio random structure searching (AIRSS) technique is used to identify the high-pressure phases of lithium (Li). We proposed the transition mechanism from the fcc to host-guest (HG) structures at finite temperature and high pressure. This complex structural phase transformation has been calculated using ab initio lattice dynamics with finite displacement method which confirms the dynamical harmonic stabilization of the HG structure. The electron distribution between the host-host atoms has also been investigated by electron localization function (ELF). The strongly localized electron of p bond has led to the stability of the HG structure. This remarkable result put the HG structure to be a common high-pressure structure among alkali metals.

15.
Sci Rep ; 8(1): 3026, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29445106

ABSTRACT

Ab initio random structure searching (AIRSS) technique is predicted a stable structure of arsenic (As). We find that the body-centered tetragonal (bct) structure with spacegroup I41/acd to be the stable structure at high pressure. Our calculation suggests transition sequence from the simple cubic (sc) structure transforms into the host-guest (HG) structure at 41 GPa and then into the bct structure at 81 GPa. The bct structure has been calculated using ab initio lattice dynamics with finite displacement method confirm the stability at high pressure. The spectral function α2F of the bct structure is higher than those of the body-centered cubic (bcc) structure. It is worth noting that both bct and bcc structures share the remarkable similarity of structural and property. Here we have reported the prediction of temperature superconductivity of the bct structure, with a T c of 4.2 K at 150 GPa.

SELECTION OF CITATIONS
SEARCH DETAIL
...