Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Zhonghua Shao Shang Za Zhi ; 33(6): 355-360, 2017 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-28648039

ABSTRACT

Objective: To explore the effects of combined application of culture supernatant of human umbilical cord mesenchymal stem cells (hUCMSCs) and ciprofloxacin on Staphylococcus aureus (SA) in vitro. Methods: hUCMSCs were isolated from umbilical cord tissue of full-term healthy fetus after cesarean section and cultured. Cells in the third passage were used in the experiments after identification. SA strains isolated from wounds of burn patients in our burn wards were used in the experiments. Cells were divided into 0, 10, 100, and 1 000 ng/mL lipopolysaccharide (LPS) groups according to the random number table (the same dividing method below). Cells were cultured with culture medium of mesenchymal stem cells (MSCs) after being treated with medium containing the corresponding mass concentrations of LPS for 12 h. At post culture hour (PCH) 6, 12, and 24, 6 wells of culture supernatant of cells in each group were obtained to measure the content of LL-37 with enzyme-linked immunosorbent assay. Ninety blood agar plates were divided into ciprofloxacin control group (CC), ciprofloxacin+ supernatant group (CS), and ciprofloxacin+ supernatant+ LL-37 antibody group (CSL), with 30 blood agar plates in each group. Blood agar plates in group CC were coated with 1.5×10(8) colony forming unit (CFU)/mL bacteria solution prepared with normal saline. Blood agar plates in group CS were coated with 1.5×10(8) CFU/mL bacteria solution prepared with normal saline and culture supernatant of hUCMSCs (cultured by culture medium of MSCs, the same below) in double volume of normal saline. Blood agar plates in group CSL were coated with 1.5×10(8) CFU/mL bacteria solution prepared with normal saline, culture supernatant of hUCMSCs in double volume of normal saline, and 2.6 µL LL-37 antibody in the concentration of 2 µg/mL. At PCH 12, 24, and 48, 10 blood agar plates of each group were harvested to observe the distribution of SA colony on blood agar plate and to measure the diameter of bacterial inhibition ring of ciprofloxacin. The minimum inhibitory concentration (MIC) of ciprofloxacin against SA of each group was recorded. Fractional inhibitory concentration (FIC) indexes of ciprofloxacin in groups CS and CSL at PCH 12, 24, and 48 were calculated, and the effect of synergy was evaluated. Data were processed with analysis of variance of factorial design, one-way analysis of variance, LSD-t test, Kruskal-Wallis test, and Mann-Whitney U test. Results: (1) At each PCH, the content of LL-37 in culture supernatant of cells in 10, 100, and 1 000 ng/mL LPS groups was higher than that in 0 ng/mL LPS group (with t values from 11.22 to 33.36, P values below 0.01); the content of LL-37 in culture supernatant of cells in 100 and 1 000 ng/mL LPS groups was higher than that in 10 ng/mL LPS group (with t values from 2.24 to 18.73, P<0.05 or P<0.01); the content of LL-37 in culture supernatant of cells in 1 000 ng/mL LPS group was higher than that in 100 ng/mL LPS group (with t values from 12.46 to 14.70, P values below 0.01). (2) At PCH 12, 24, and 48, the bacterial colonies in groups CC, CS, and CSL began to integrate over time. At PCH 12, 24, and 48, the diameters of bacterial inhibition ring of ciprofloxacin in group CC were 26, 24, and 23 mm, respectively, with no obvious change. At PCH 12, 24, and 48, the diameters of bacterial inhibition ring of ciprofloxacin in groups CS and CSL were 82, 71, 68 mm, and 74, 59, 56 mm, respectively, significantly longer than those of group CC. (3) At each PCH, the MIC of ciprofloxacin against SA was significantly higher in group CC than in groups CS and CSL (with Z values from 6.22 to 6.71, P values below 0.01); the MIC of ciprofloxacin against SA was significantly higher in group CSL than in group CS (with Z values all equal to 6.72, P values below 0.01). (4) FIC indexes of ciprofloxacin in groups CS and CSL at PCH 12, 24, and 48 were 0.011, 0.032, 0.032, and 0.122, 0.350, 0.350, respectively. The results indicated that culture supernatant of hUCMSCs had synergistically antibacterial effect on ciprofloxacin. Conclusions: hUCMSCs can secrete LL-37, and the secretion level is increased with increase of LPS concentration. Combination of culture supernatant of hUCMSCs and ciprofloxacin can decrease the dosage of ciprofloxacin in resisting SA. Once LL-37 is neutralized, the synergistically antibacterial effect of culture supernatant of hUCMSCs is decreased.


Subject(s)
Ciprofloxacin/therapeutic use , Lipopolysaccharides/pharmacology , Mesenchymal Stem Cells/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/therapeutic use , Burns , Enzyme-Linked Immunosorbent Assay , Female , Humans , Mesenchymal Stem Cells/cytology , Pregnancy , Staphylococcal Infections/drug therapy , Stem Cells , Umbilical Cord/cytology
2.
Nano Lett ; 12(3): 1717-21, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22352856

ABSTRACT

Coupling of the localized surface plasmons between two closely apposed gold nanoparticles (nanoantenna) can cause strong enhancements of fluorescence or Raman signal intensity from molecules in the plasmonic "hot-spot". Harnessing these properties for practical applications is challenging due to the need to fabricate gold particle arrays with well-defined nanometer spacing and a means of delivering functional molecules to the hot-spot. We report fabrication of billions of plasmon-coupled nanostructures on a single substrate by a combination of colloid lithography and plasma processing. Controlled spacing of the nanoantenna gaps is achieved by taking advantage of the fact that polystyrene particles melt together at their contact point during plasma processing. The resulting polymer thread shadows a gap of well-defined spacing between each pair of gold triangles in the final array. Confocal surface-enhanced Raman spectroscopy imaging confirms the array is functionally uniform. Furthermore, a fully intact supported membrane can be formed on the intervening substrate by vesicle fusion. Trajectories of freely diffusing individual proteins are traced as they sequentially pass through, and are enhanced by, multiple gaps. The nanoantenna array thus enables enhanced observation of a fluid membrane system without static entrapment of the molecules.


Subject(s)
Gold/chemistry , Membranes, Artificial , Nanostructures/chemistry , Nanostructures/ultrastructure , Spectrum Analysis, Raman/methods , Surface Plasmon Resonance/methods , Light , Molecular Probe Techniques , Scattering, Radiation
3.
Yi Chuan Xue Bao ; 25(6): 551-8, 1998 Dec.
Article in Chinese | MEDLINE | ID: mdl-10465899

ABSTRACT

We have developed a potential bivalent vaccine stain through the chromosomal integration system in which the gene that codes for the B subunit of cholera toxin was integrated into the chromosome of an attenuated strain of Salmonella typhimurium. This system involves two steps: construction of a hisOG deletion mutation into the chromosome of S. typhimurium strain SL3261: and replacement of the hisOG deletion by the complete hisOG region and the segment of heterologous DNA which codes for the B subunit of cholera toxin. The recombinant strain SL3261 (named TT201) was obtained. Southern hybrid confirmed that the CTB gene was integrated into the chromosome of TT201. Western blot analysis demonstrated that the CTB gene was expressed stably in TT201. When administered orally to mice, the recombinant strain elicited a serum antibody response to CTB. The strain TT201 is a potentially bivalent vaccine candidate.


Subject(s)
Cholera Toxin/genetics , Chromosomes, Bacterial , Salmonella typhimurium/genetics , Vaccines, Synthetic/genetics , Animals , Antibodies, Bacterial/blood , Cholera Toxin/immunology , Female , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...