Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 14(43): 12194-12204, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37969573

ABSTRACT

Carbon dots (CDs) have attracted significant attention in the energy, environment, and biology fields due to their exceptional physicochemical properties. However, owing to the multifarious precursors and complex reaction mechanisms, the production of carbon dots from organic molecules is still a mysterious process. Inspired by the color change of sodium hydroxide ethanol solution after standing for some time, in this work, we thoroughly investigated the reaction mechanism from alcohol molecules to carbon dots through a lot of experiments and theoretical calculations, and it was found that the rate-controlling reaction is the formation of aldehydes, and it is also confirmed that there is a self-catalysis reaction, which can accelerate the conversion from alcohol to aldehyde, further facilitating the final formation of CDs. After the rate-controlling reaction of alcohol to aldehyde, under strongly alkaline conditions, an aldol reaction occurs to form unsaturated aldehydes, followed by further condensation and polymerization reactions to form long carbon chains, which are cross-linked and dehydrated to form carbon dots with a carbon core and surface functional groups. Additionally, it is found that the reaction can be largely accelerated with the assistance of electricity, which indicates the great prospect of industrial production. Furthermore, the obtained CDs with rich functional groups can be utilized as electrolyte additives to optimize the deposition behavior of Na metal, manifesting great potential towards safe and stable Na metal batteries.

2.
ACS Nano ; 17(21): 22082-22094, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37916798

ABSTRACT

Fluorinated carbon dots (FCDs) have garnered interest owing to their distinct physicochemical properties. Nevertheless, intricate synthesis procedures and quite low fluorine doping levels limit its development and application. Herein, we propose a facile approach based on the Claisen-Schmidt reaction to realize gram-scale synthesis of highly fluorinated carbon dots (up to 20.79 at. %) at room temperature and atmospheric pressure, and a comprehensive exploration of the specific reaction mechanism is conducted. Furthermore, in consideration of the high fluorine content, good dispersibility, and compatibility with polymer electrolyte, the synthesized FCDs are utilized as an additive for PEO-based solid electrolytes of a Li battery to improve its ionic conductivity, interface stability, and mechanical properties. The introduction of FCDs can not only reduce the crystallinity of PEO and enhance the interaction of polymer chains, but also facilitate the establishment of uninterrupted pathways and in situ fluorination at the interface, which is substantiated by both theoretical calculations and experimental findings. As a result, the lithium symmetrical battery can operate stably for 1000 h at a current density of 0.4 mA cm-2. Simultaneously, the LiFePO4/Li battery utilizing the composite electrolyte exhibits a capacity of 130.3 mAh g-1 over 300 cycles while maintaining a capacity retention rate of 95.10%. This study develops a strategy for synthesizing highly fluorinated carbon dots, which demonstrate a useful influence on PEO electrolytes, thus boosting the advancement of FCDs and solid-state batteries.

3.
ACS Appl Mater Interfaces ; 15(46): 53533-53539, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37938031

ABSTRACT

Difluoroethylene carbonate (DFEC) featuring abundant fluorine atoms has been proposed as a multifunctional electrolyte additive to boost the stability of the electrolyte-electrode interphase of lithium metal batteries. Thus, introducing the DFEC additive enables a high capacity retention rate of the Li||NCM811 full cell (up to 75% after 200 cycles) at 4.5 V high voltage.

4.
Adv Mater ; 35(38): e2303193, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37267091

ABSTRACT

Solid-state batteries can ensure high energy density and safety in lithium metal batteries, while polymer electrolytes are plagued by slow ion kinetics and low selective transport of Li+ . Metal-organic frameworks (MOFs) are proposed as emerging fillers for solid-state poly(ethylene oxide)(PEO) electrolytes, however, developing functionalized MOFs and understanding their roles on ion transfer has proven challenging. Herein, combining computational and experimental results, the functional group regulation in MOFs can effectively change surficial charge distribution and limit anion movement is revealed, providing a potential solution to these issues. Specifically, functionalized 2D MOF sheets are designed through molecular engineering to construct high-performance composite electrolytes, where the electron-donating effect of substituents in 2D-MOFs effectively limits the movement of ClO4 - and promotes mechanical properties and ion migration numbers (0.36 up to 0.64) of PEO. As a result, Li/Li cells with composite electrolyte exhibit superior cyclability for 1000 h at a current density of 0.2 mA cm-2 . Meanwhile, the solid LiFePO4 /Li battery delivers highly reversible capacities of 148.8 mAh g-1 after 200 cycles. These findings highlight a new approach for anion confinement through the use of functional group electronic effects, leading to enhanced ionic conductivity, and a feasible direction for high-performance solid-state batteries.

5.
Small ; 19(33): e2301275, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37081376

ABSTRACT

Solid-state polymer electrolytes are highly anticipated for next generation lithium ion batteries with enhanced safety and energy density. However, a major disadvantage of polymer electrolytes is their low ionic conductivity at room temperature. In order to enhance the ionic conductivity, here, graphene quantum dots (GQDs) are employed to improve the poly (ethylene oxide) (PEO) based electrolyte. Owing to the increased amorphous areas of PEO and mobility of Li+ , GQDs modified composite polymer electrolytes achieved high ionic conductivity and favorable lithium ion transference numbers. Significantly, the abundant hydroxyl groups and amino groups originated from GQDs can serve as Lewis base sites and interact with lithium ions, thus promoting the dissociation of lithium salts and providing more ion pathways. Moreover, lithium dendrite is suppressed, associated with high transference number, enhanced mechanical properties and steady interface stability. It is further observed that all solid-state lithium batteries assembled with GQDs modified composite polymer electrolytes display excellent rate performance and cycling stability.

6.
J Phys Chem Lett ; 13(51): 11883-11891, 2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36524766

ABSTRACT

The aqueous zinc-ion battery is considered as one of the best alternatives to lithium-ion batteries due to its low cost and high safety. However, the inevitable dendrite growth, byproduct formation, and the side reactions have inhibited the application of aqueous zinc-ion batteries. In this work, the electronegative nitrogen and sulfur-codoped carbon dots (NSCDs) are proposed as an electrolyte additive to regulate the uniform distribution of zinc ions and inhibit the growth of dendrites. It was found that only a small amount of NSCD additive (0.2 mg mL-1) exerted a significant influence in electrochemical performance; the symmetrical cell can operate stably for 2000 h with a low voltage hysteresis of 33 mV at the current density of 1 mA cm-2, and a high Coulombic efficiency (CE) of 99.5% can be obtained after 250 cycles.

7.
Chem Commun (Camb) ; 58(44): 6449-6452, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35552567

ABSTRACT

Bi-doped carbon dots (Bi-CDs) with rich polar groups and good compatibility were employed as co-deposition electrolyte additives to homogenize Li+ flux for dendrite-free Li deposition. High coulombic efficiency (99.0%) and long-term stability (800 h) with reduced overpotential (∼15 mV) were achieved after introducing Bi-CDs in conventional electrolyte for high-performance Li-S batteries.

SELECTION OF CITATIONS
SEARCH DETAIL