Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Antiviral Res ; 220: 105754, 2023 12.
Article in English | MEDLINE | ID: mdl-37967753

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus that causes severe morbidity and mortality in piglets, resulting in substantial economic losses to the swine industry. While vaccination is currently the most effective preventive measure, existing vaccines fail to provide complete and reliable protection against PEDV infection. Consequently, there is a need to explore alternative or complementary strategies to address this issue. In this study, we utilized single B cell antibody technology to obtain a potent neutralizing antibody, C62, which specifically targets the receptor binding domain S1B of the PEDV-S1 protein. C62 exhibited potent neutralizing activity against PEDV and inhibited viral attachment to the cell surface in vitro. Furthermore, the effectiveness of C62 in mitigating PEDV infection was demonstrated in vivo, as evidenced by the delayed onset of diarrhea and reduced mortality rates observed in piglets following oral administration of C62. Our study provides an alternative approach for controlling PEDV infection. Meanwhile, C62 holds promise as a therapeutic biological agent to complement existing vaccines. More importantly, our study forms a solid foundation for the development of whole-porcine neutralizing antibodies against other swine coronaviruses, thus contributing to the overall improvement of swine health.


Subject(s)
Alphacoronavirus , Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Viral Vaccines , Animals , Swine , Antibodies, Neutralizing , Antibodies, Viral , Swine Diseases/prevention & control
2.
J Med Virol ; 95(10): e29171, 2023 10.
Article in English | MEDLINE | ID: mdl-37830751

ABSTRACT

Influenza A virus (IAV) relies on intricate and highly coordinated associations with host factors for efficient replication and transmission. Characterization of such factors holds great significance for development of anti-IAV drugs. Our study identified protein arginine methyltransferase 5 (PRMT5) as a novel host factor indispensable for IAV replication. Silencing PRMT5 resulted in drastic repression of IAV replication. Our findings revealed that PRMT5 interacts with each protein component of viral ribonucleoproteins (vRNPs) and promotes arginine symmetric dimethylation of polymerase basic 2 (PB2). Overexpression of PRMT5 enhanced viral polymerase activity in a dose-dependent manner, emphasizing its role in genome transcription and replication of IAV. Moreover, analysis of PB2 protein sequences across various subtypes of IAVs demonstrated the high conservation of potential RG motifs recognized by PRMT5. Overall, our study suggests that PRMT5 supports IAV replication by facilitating viral polymerase activity by interacting with PB2 and promoting its arginine symmetric dimethylation. This study deepens our understanding of how IAV manipulates host factors to facilitate its replication and highlights the great potential of PRMT5 to serve as an anti-IAV therapeutic target.


Subject(s)
Influenza A virus , Protein-Arginine N-Methyltransferases , Humans , Arginine , Influenza A virus/genetics , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Ribonucleoproteins/metabolism , Virus Replication
3.
J Virol ; 97(10): e0092623, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37754758

ABSTRACT

IMPORTANCE: Type I interferon (IFN-I), produced by the innate immune system, plays an essential role in host antiviral responses. Proper regulation of IFN-I production is required for the host to balance immune responses and prevent superfluous inflammation. IFN regulatory factor 3 (IRF3) and subsequent sensors are activated by RNA virus infection to induce IFN-I production. Therefore, proper regulation of IRF3 serves as an important way to control innate immunity and viral replication. Here, we first identified Prohibitin1 (PHB1) as a negative regulator of host IFN-I innate immune responses. Mechanistically, PHB1 inhibited the nucleus import of IRF3 by impairing its binding with importin subunit alpha-1 and importin subunit alpha-5. Our study demonstrates the mechanism by which PHB1 facilitates the replication of multiple RNA viruses and provides insights into the negative regulation of host immune responses.


Subject(s)
DEAD Box Protein 58 , Prohibitins , RNA Viruses , Receptors, Immunologic , Signal Transduction , Virus Replication , DEAD Box Protein 58/antagonists & inhibitors , DEAD Box Protein 58/metabolism , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Karyopherins/metabolism , Prohibitins/metabolism , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Interferon Type I/biosynthesis , Interferon Type I/immunology , RNA Viruses/growth & development , RNA Viruses/immunology , RNA Viruses/metabolism
4.
J Med Virol ; 95(6): e28849, 2023 06.
Article in English | MEDLINE | ID: mdl-37282768

ABSTRACT

The genome of Influenza A virus (IAV) transcribes and replicates in the nucleus of cells and the viral ribonucleoprotein (vRNP) complex plays an important role in viral replication. As a major component of the vRNP complex, the polymerase basic protein 2 (PB2) is translocated to the nucleus via its nuclear localization signals mediated by the importins. Herein, it was identified proliferating cell nuclear antigen (PCNA) as an inhibitor of nuclear import of PB2 and subsequent viral replication. Mechanically, PCNA interacted with PB2 and inhibited the nuclear import of PB2. Furthermore, PCNA decreased the binding efficiency of PB2 with importin alpha (importin α) and the K738, K752, and R755 of PB2 were identified as the key sites binding with PCNA and importin α. Furthermore, PCNA was demonstrated to retrain the vRNP assembly and polymerase activity. Taken together, the results demonstrated that PCNA impaired the nuclear import of PB2, vRNP assembly and polymerase activity, which negatively regulated virus replication.


Subject(s)
Influenza A virus , Humans , Active Transport, Cell Nucleus , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , alpha Karyopherins/metabolism , Ribonucleoproteins/metabolism , Virus Replication
5.
Int J Mol Sci ; 24(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36835584

ABSTRACT

Classified as a class B infectious disease by the World Organization for Animal Health (OIE), bovine viral diarrhea/mucosal disease is an acute, highly contagious disease caused by the bovine viral diarrhea virus (BVDV). Sporadic endemics of BVDV often lead to huge economic losses to the dairy and beef industries. To shed light on the prevention and control of BVDV, we developed two novel subunit vaccines by expressing bovine viral diarrhea virus E2 fusion recombinant proteins (E2Fc and E2Ft) through suspended HEK293 cells. We also evaluated the immune effects of the vaccines. The results showed that both subunit vaccines induced an intense mucosal immune response in calves. Mechanistically, E2Fc bonded to the Fc γ receptor (FcγRI) on antigen-presenting cells (APCs) and promoted IgA secretion, leading to a stronger T-cell immune response (Th1 type). The neutralizing antibody titer stimulated by the mucosal-immunized E2Fc subunit vaccine reached 1:64, which was higher than that of the E2Ft subunit vaccine and that of the intramuscular inactivated vaccine. The two novel subunit vaccines for mucosal immunity developed in this study, E2Fc and E2Ft, can be further used as new strategies to control BVDV by enhancing cellular and humoral immunity.


Subject(s)
Diarrhea Virus 2, Bovine Viral , Immunity, Mucosal , Viral Vaccines , Animals , Cattle , Humans , Antibodies, Viral , Diarrhea , HEK293 Cells , Vaccines, Subunit/immunology , Viral Vaccines/immunology , Hemorrhagic Syndrome, Bovine/prevention & control
6.
J Biomed Sci ; 30(1): 5, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36653801

ABSTRACT

Autophagy is an evolutionarily conserved catabolic cellular process that exerts antiviral functions during a viral invasion. However, co-evolution and co-adaptation between viruses and autophagy have armed viruses with multiple strategies to subvert the autophagic machinery and counteract cellular antiviral responses. Specifically, the host cell quickly initiates the autophagy to degrade virus particles or virus components upon a viral infection, while cooperating with anti-viral interferon response to inhibit the virus replication. Degraded virus-derived antigens can be presented to T lymphocytes to orchestrate the adaptive immune response. Nevertheless, some viruses have evolved the ability to inhibit autophagy in order to evade degradation and immune responses. Others induce autophagy, but then hijack autophagosomes as a replication site, or hijack the secretion autophagy pathway to promote maturation and egress of virus particles, thereby increasing replication and transmission efficiency. Interestingly, different viruses have unique strategies to counteract different types of selective autophagy, such as exploiting autophagy to regulate organelle degradation, metabolic processes, and immune responses. In short, this review focuses on the interaction between autophagy and viruses, explaining how autophagy serves multiple roles in viral infection, with either proviral or antiviral functions.


Subject(s)
Virus Diseases , Viruses , Humans , Virus Replication , Autophagy/physiology , Antiviral Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...