Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
J Econ Entomol ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579138

ABSTRACT

Metarhizium anisopliae is an important class of entomopathogenic fungi used for the biocontrol of insects, but its virulence is affected by insect immunity. We identified a novel FK506 binding protein gene that was differentially expressed between control and Metarhizium-treated Locusta migratoria manilensis. We hypothesized that this protein played an important role in Metarhizium infection of L. migratoria and could provide new insights for developing highly efficient entomopathogenic fungi. We, therefore, cloned the specific gene and obtained its purified protein. The gene was then named FKBP52, and its dsRNA (dsFKBP52) was synthesized and used for gene interference. Bioassay results showed that the mortality of L. migratoria treated with dsFKBP52 + Metarhizium was significantly lower than that of other treatments. Furthermore, immune-related genes (MyD88, Dorsal, Cactus, and Defensin) in L. migratoria treated with dsFKBP52 + Metarhizium showed significant upregulation compared to that treated with Metarhizium only. However, the activities of peroxidase (POD), superoxide dismutase (SOD), and calcineurin (CaN) showed fluctuations. These results suggest that the FKBP52 gene may play a crucial role in the innate immunity of L. migratoria. The effect of its silencing indicated that this immunity-related protein might be a potential target for insect biocontrol.

2.
Pestic Biochem Physiol ; 195: 105515, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37666582

ABSTRACT

Locusta migratoria is one of the most destructive pests that threaten crop growth and food production security in China. Metarhizium anisopliae has been widely used to control locusts around the world. Previous laboratory studies have revealed that LmFKBP24 is significantly upregulated after M. anisopliae infection, suggesting that it may play a role in immune regulation, yet the mechanism remains largely unknown. To gain further insight, we conducted an RNA interference (RNAi) study to investigate the function of LmFKBP24 in the regulation of antifungal immunity and analyzed the expression patterns of immune-induced genes. Our research revealed that LmFKBP24 is activated and upregulated when locusts are infected by M. anisopliae, and it inhibits the expression of antimicrobial peptide (AMP) defensin in the downstream of Toll pathway by combining with LmEaster rather than LmCyPA, thus exerting an immunosuppressive effect. To further investigate this, we conducted yeast two-hybrid (Y2H) and pull down assays to identify the proteins interacting with LmFKBP24. Our results provided compelling evidence for revealing the immune mechanism of L. migratoria and uncovered an innovative target for the development of new biological pesticides. Furthermore, our research indicates that LmFKBP24 interacts with LmEaster through its intact structure, providing a strong foundation for further exploration.


Subject(s)
Locusta migratoria , Animals , Antifungal Agents/pharmacology , Biological Assay , Biological Control Agents , China , Saccharomyces cerevisiae
3.
Sci Rep ; 13(1): 4048, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36899085

ABSTRACT

FK506 binding proteins (FKBPs) are a highly-conserved group of proteins known to bind to FK506, an immunosuppressive drug. They play different physiological roles, including transcription regulation, protein folding, signal transduction and immunosuppression. A number of FKBP genes have been identified in eukaryotes; however, very little information about these genes has been reported in Locusta migratoria. Here, we identified and characterized 10 FKBP genes from L. migratoria. Phylogenetic analysis and comparison of domain architectures indicated that the LmFKBP family can be divided into two subfamilies and five subclasses. Developmental and tissue expression pattern analysis revealed that all LmFKBPs transcripts, including LmFKBP46, LmFKBP12, LmFKBP47, LmFKBP79, LmFKBP16, LmFKBP24, LmFKBP44b, LmFKBP53, were periodically expressed during different developmental stages and mainly expressed in the fat body, hemolymph, testis, and ovary. In brief, our work depicts a outline but panoramic picture of LmFKBP family in L. migratoria, and provides a solid foundation to further investigate the molecular functions of LmFKBPs.


Subject(s)
Locusta migratoria , Tacrolimus Binding Proteins , Male , Animals , Female , Tacrolimus Binding Proteins/genetics , Locusta migratoria/genetics , Phylogeny , Protein Folding , Tacrolimus
4.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36835451

ABSTRACT

Metarhizium anisopliae is an entomopathogenic fungus which may enhance plant growth and resistance when acting as an endophyte in host plants. However, little is known about the protein interactions nor their activating mechanisms. Common in fungal extracellular membrane (CFEM) proteins have been identified as plant immune regulators that suppress or activate plant resistance responses. Here, we identified a CFEM domain-containing protein, MaCFEM85, which was mainly localized in the plasma membrane. Yeast two-hybrid (Y2H), glutathione-S-transferase (GST) pull-down, and bimolecular fluorescence complementation assays demonstrated that MaCFEM85 interacted with the extracellular domain of a Medicago sativa (alfalfa) membrane protein, MsWAK16. Gene expression analyses showed that MaCFEM85 and MsWAK16 were significantly upregulated in M. anisopliae and M. sativa, respectively, from 12 to 60 h after co-inoculation. Additional yeast two-hybrid assays and amino acid site-specific mutation indicated that the CFEM domain and 52th cysteine specifically were required for the interaction of MaCFEM85 with MsWAK16. Defense function assays showed that JA was up-regulated, but Botrytis cinerea lesion size and Myzus persicae reproduction were suppressed by transient expression of MaCFEM85 and MsWAK16 in the model host plant Nicotiana benthamiana. Collectively, these results provide novel insights into the molecular mechanisms underlying interactions of M. anisopliae with host plants.


Subject(s)
Cysteine , Plants , Biological Transport , Cysteine/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Plant , Plant Diseases/microbiology , Plant Proteins/genetics , Plants/metabolism , Saccharomyces cerevisiae/metabolism , Nicotiana/genetics , Metarhizium/metabolism
5.
J Fungi (Basel) ; 8(7)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35887418

ABSTRACT

The entomopathogen Metarhizium anisopliae is a facultative rhizosphere or endophytic fungus available for managing pests and improving plant growth. The CFEM (common in fungal extracellular membrane) proteins form a unique group in fungi but are rarely reported in entomopathogens. In this study, we cloned and identified 13 CFEM genes from M. anisopliae (MaCFEMs). Sequence alignment and WebLogo analysis showed that eight cysteines were the most conserved amino acids in their CFEM domain. Phylogenic analysis suggested that these 13 proteins could be divided into 4 clades based on the presence of the transmembrane region and the position of CFEM domain in the whole sequence. Six MaCFEM proteins with a signal peptide and without a transmembrane domain were considered candidate effector proteins. According to Phyre2 analysis, the MaCFEM88 and MaCFEM85 have the most homologous to Csa2 in Candida albicans. Subcellular localization analysis revealed that five effectors were located in the plasma membrane, while MaCFEM88 may locate in both plasma membrane and nucleus in the treated Nicotiana benthamiana. Expression pattern analysis showed that MaCFEM81, 85, 88, and 89 expression level was significantly higher in the sporulation stage compared to other growth stages. Furthermore, the yeast secretion assay showed that six candidate effectors were able to secrete out of the cell. All of the MaCFEMs couldn't affect INF1-induced programmed cell death (PCD), but MaCFEM85 and 88 could trigger a slight hypersensitive response both when applied separately or in combination with INF1 in N. benthamiana leaves. These findings showed that six MaCFEM potential effectors with various structures and subcellular localizations in host cells might be used to illustrate the roles of MaCFEM proteins during M. anisopliae-plant interactions.

6.
Insects ; 13(1)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35055915

ABSTRACT

Oedaleus decorus asiaticus (Bey-Bienko) is a destructive pest in grasslands and adjacent farmland in northern China, Mongolia, and other countries in Asia. It has been supposed that this insect pest can migrate a long distance and then induce huge damages, however, the migration mechanism is still unrevealed. The current study uses insect light trap data from Yanqing (Beijing), together with regional meteorological data to determine how air flow contributes to the long-distance migration of O. decorus asiaticus. Our results indicate that sinking airflow is the main factor leading to the insects' forced landing, and the prevailing northwest wind was associated with O. decorus asiaticus taking off in the northwest and moving southward with the airflow from July to September. Meanwhile, the insects have a strong migratory ability, flying along the airflow for several nights. Thus, when the airflow from the northwest met the northward-moving warm current from the southwest, a large number of insects were dropped due to sinking airflow, resulting in a large outbreak. Our simulations suggest that the source of the grasshoppers involved in these outbreaks during early 2000s in northern China probably is in Mongolia, and all evidence indicates that there are two important immigrant routes for O. decorus asiaticus migration from Mongolia to Beijing. These findings improves our understanding of the factors guiding O. decorus asiaticus migration, providing valuable information to reduce outbreaks in China that have origins from outside the country.

7.
Insects ; 12(3)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802986

ABSTRACT

Diapause is a physiological development arrest state that helps insects to adapt to seasonality and overcome adverse environmental conditions. Numerous reports have indicated that insulinlike and fork head transcription factor (FOXO) are involved in the regulation of diapause in insects. However, the upstream modulators of the insulin-like signaling pathway (ISP) involved in diapause regulation are still unknown. Here, we used RNAi and an inhibitor to treat PTK and PTP1B in adult tissues and injected Prx V or RNAi Prx V under both short and long photoperiod conditions and monitored effects on the expression of ISP genes, the phosphorylation levels for IR and IRS, the activity of NADPH oxidase, the accumulation of reactive oxygen species (ROS) and energy metabolism, seeking to identify both proteins and broader cellular metabolism influences on diapause regulation. We found that under short photoperiod conditions PTP1B in female adults induces egg diapause, whereas PTK in female adults inhibits egg diapause. Intriguingly, we also found that the antioxidant enzyme Prx V is a negative regulator of NADPH oxidizing reaction and apparently decreases ROS production and NADPH-OX activity. In contrast, all the eggs laid by adults that were treated with a series of knockdown or purified-protein injection experiments or inhibitor studies and that were reared under long photoperiod conditions hatched successfully. Thus, our results suggest a mechanism wherein diapause-related proteins (PTP1B, PTK, and Prx V) of female adults are the upstream modulators that regulate offspring eggs' diapause process through the insulin-like signaling pathway under short photoperiod conditions.

8.
Front Physiol ; 12: 642893, 2021.
Article in English | MEDLINE | ID: mdl-33828488

ABSTRACT

In order to explore the synergistic control effect of crude extracts of Artemisia sieversiana and Metarhizium anisopliae on Oedaleus asiaticus, we used different doses of M. anisopliae and crude extracts of A. sieversiana singly and in combination, to determine their toxicities to fourth instar O. asiaticus. The results showed that the combination of 10% crude extract of A. sieversiana with 107 and 108 spores/g M. anisopliae concentrations and the combination of 20% crude extract of A. sieversiana with 107 and 108 spores/g M. anisopliae concentrations had significant effects on the mortality, body weight gain, body length gain, growth rate, and overall performance of O. asiaticus than those of the crude extract of A. sieversiana and M. anisopliae alone. Among them, the 20% A. sieversiana crude extract mixed with 108 spores/g M. anisopliae and 10% A. sieversiana crude extract combined with 107 spores/g M. anisopliae, had the best control efficacy. In order to clarify the biochemical mechanism underlying the immune responses of O. asiaticus to the pesticide treatments, we monitored the activities of four enzymes: superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT), and polyphenol oxidase (PPO). The results showed that the activities of three enzymes (SOD, CAT, and PPO) were significantly increased from the treatment with the combination of M. anisopliae mixed with crude extract of A. sieversiana. Interestingly, compared to the crude extract, the combination treatment did not significantly induce the expression of POD enzyme activity, which may be a biochemical factor for increasing the control effect of the combination treatment. Our results showed that the combination treatment had synergistic and antagonistic effects on host mortality, growth, development, and enzyme activities in O. asiaticus.

9.
Insects ; 11(11)2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33167530

ABSTRACT

Peroxiredoxins (Prxs), which scavenge reactive oxygen species (ROS), are cysteine-dependent peroxide reductases that group into six structurally discernable classes: AhpC-Prx1, BCP-PrxQ, Prx5, Prx6, Tpx, and AhpE. A previous study showed that forkhead box protein O (FOXO) in the insulin signaling pathway (ISP) plays a vital role in regulating locust diapause by phosphorylation, which can be promoted by the high level of ROS. Furthermore, the analysis of transcriptome between diapause and non-diapause phenotypes showed that one of the Prxs, LmPrx6, which belongs to the Prx6 class, was involved. We presumed that LmPrx6 might play a critical role in diapause induction of Locusta migratoria and LmPrx6 may therefore provide a useful target of control methods based on RNA interference (RNAi). To verify our hypothesis, LmPrx6 was initially cloned from L. migratoria to make dsLmPrx6 and four important targets were tested, including protein-tyrosine phosphorylase 1B (LmPTP1B), insulin receptor (LmIR), RAC serine/threonine-protein kinase (LmAKT), and LmFOXO in ISP. When LmPrx6 was knocked down, the diapause rate was significantly reduced. The phosphorylation level of LmPTP1B significantly decreased while the phosphorylation levels of LmIR, LmAKT, and LmFOXO were significantly increased. Moreover, we identified the effect on two categories of genes downstream of LmFOXO, including stress tolerance and storage of energy reserves. Results showed that the mRNA levels of catalase and Mn superoxide dismutase (Mn-SOD), which enhanced stress tolerance, were significantly downregulated after silencing of LmPrx6. The mRNA levels of glycogen synthase and phosphoenolpyruvate carboxy kinase (PEPCK) that influence energy storage were also downregulated after knocking down of LmPrx6. The silencing of LmPrx6 indicates that this regulatory protein may probably be an ideal target for RNAi-based diapause control of L. migratoria.

10.
Insects ; 11(7)2020 Jul 04.
Article in English | MEDLINE | ID: mdl-32635501

ABSTRACT

Oedaleus asiaticus is one of the dominant species of grasshoppers in the rangeland on the Mongolian plateau, and a serious pest, but its migratory behavior is poorly known. We investigated the take-off behavior of migratory O. asiaticus in field cages in the inner Mongolia region of northern China. The species shows a degree of density-dependent phase polyphenism, with high-density swarming populations characterized by a brown morph, while low-density populations are more likely to comprise a green morph. We found that only 12.4% of brown morphs engaged in migratory take-off, and 2.0% of green morphs. Migratory grasshoppers took off at dusk, especially in the half hour after sunset (20:00-20:30 h). Most emigrating individuals did not have any food in their digestive tract, and the females were mated but with immature ovaries. In contrast, non-emigrating individuals rarely had empty digestive tracts, and most females were mated and sexually mature. Therefore, it seems clear that individuals prepare for migration in the afternoon by eliminating food residue from the body, and migration is largely restricted to sexually immature stages (at least in females). Furthermore, it was found that weather conditions (particularly temperature and wind speed at 15:00 h) in the afternoon had a significant effect on take-off that evening, with O. asiaticus preferring to take off in warm, dry and calm weather. The findings of this study will contribute to a reliable basis for forecasting migratory movements of this pest.

11.
Insects ; 11(3)2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32164277

ABSTRACT

We analyzed the transcriptomes of Romalea microptera grasshoppers after 8 years of artificial selection for either long or short thoraces. Evolution proceeded rapidly during the experiment, with a 13.3% increase and a 32.2% decrease in mean pronotum lengths (sexes combined) in the up- and down-selected colonies, respectively, after only 11 generations. At least 16 additional traits also diverged between the two colonies during the selection experiment. Transcriptomic analysis identified 693 differentially expressed genes, with 386 upregulated and 307 downregulated (55.7% vs. 44.3%), including cellular process, metabolic process, binding, general function prediction only, and signal transduction mechanisms. Many of the differentially expressed genes (DEGs) are known to influence animal body size.

12.
FEBS Open Bio ; 10(5): 707-717, 2020 05.
Article in English | MEDLINE | ID: mdl-32107869

ABSTRACT

Diapause is a state of arrested growth, which allows insects to adapt to diverse environments. Serine protease inhibitors (serpins) play an important role in various physiological processes, including blood coagulation, fibrinolysis, development, complement activation and extracellular matrix remodeling. We hypothesized that serpin may affect energy metabolism and thereby control diapause of migratory locust (Locusta migratoria) embryos by regulating protease cascades. A total of seven nonredundant serpin genes (named serpin1-serpin7) of L. migratoria were obtained through transcriptomic analysis. We further performed label-free proteomic sequencing and analysis of diapause and nondiapause eggs of L. migratoria, revealing significant differences in serpin7 expression. A significant reduction in diapause rate under the short photoperiod was observed in insects treated with serpin7 double-stranded RNA. Furthermore, knockdown of the serpin7 gene resulted in significant upregulation of the activity of polyphenol oxidase. We therefore propose that the observed serpin7 gene plays a crucial role in diapause, suggesting that control of energy metabolism may have potential as a future strategy for the reproductive control of insect pests.


Subject(s)
Diapause/physiology , Ovum/metabolism , Serpins/metabolism , Animals , Catechol Oxidase/metabolism , Gene Expression/genetics , Gene Expression Profiling/methods , Locusta migratoria/metabolism , Locusta migratoria/physiology , Proteomics/methods , Reproduction/physiology , Serine Proteinase Inhibitors/metabolism , Serine Proteinase Inhibitors/physiology , Serpins/physiology , Transcriptome/genetics
13.
Genomics ; 112(2): 1821-1828, 2020 03.
Article in English | MEDLINE | ID: mdl-31669703

ABSTRACT

FMRFamide-related peptides (FaRPs) are a type of neuropeptide, which participate in a variety of physiological processes in insects. Previous study showed that myosuppressin, being a member of FaRPs, initiated pupal diapause in Mamestra brassicae. We presumed that FaRPs genes might play a critical role in photoperiodic diapause induction of L. migratoria. To verify our hypothesis, flrf, a precursor gene of FaRP from L. migratoria, was initially cloned under long and short photoperiods that encoded by flrf gene identified from central nervous system (CNS). Phylogenetic analysis showed that the protein encoded by L. migratoria flrf gene, clustered together with Nilaparvata lugens (Hemiptera: Delphacidae) with 100% bootstrap support, was basically an FMRFamide precursor homologue. We noticed the availability of -RFamide peptides (GSERNFLRFa, DRNFIRFa) under short photoperiod only, which suggested their functions related to photoperiodic diapause induction. RNAi and quantitative real-time PCR (qRT-PCR) results further confirmed that the flrf gene promoted locust's diapause.


Subject(s)
Diapause, Insect , Insect Proteins/genetics , Locusta migratoria/genetics , Oligopeptides/genetics , Animals , Central Nervous System/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Insect Proteins/metabolism , Locusta migratoria/growth & development , Oligopeptides/metabolism , Photoperiod , Reactive Oxygen Species/metabolism
14.
BMC Ecol ; 19(1): 32, 2019 09 04.
Article in English | MEDLINE | ID: mdl-31484520

ABSTRACT

BACKGROUND: The grasshopper Oedaleus asiaticus Bey-Bienko (Acrididae: Oedipodinae) is a dominant and economically important pest that is widely distributed across the Mongolian plateau. This herbivore pest causes major damage to the grassland of the Inner Mongolian steppe in China. The population dynamics of herbivore pests is affected by grassland management practices (e.g., mowing and heavy livestock grazing) that alter plant community structures and stoichiometric characteristics. For example, O. asiaticus outbreak is closely associated with plant preference changes caused by nitrogen loss from heavy livestock grazing. However, the manner by which small-scale variation in vegetation affects grasshopper performance and promotes outbreak is poorly characterized. To address this question, we investigated the relationship between small-scale (1 m2) vegetation variability and measures of O. asiaticus performance associated with plant stoichiometric characteristics. RESULTS: We found that food preferences of O. asiaticus varied significantly, but maintained a specific dietary structure for different plant compositions. Notably, small-scale changes in plant community composition significantly affected grasshopper food preference and body size. Partial least-square modeling indicated that plant proportion and biomass affected grasshopper body size and density. We found that this effect differed between sexes. Specifically, female body mass positively correlated with the proportion of Stipa krylovii grass, whereas male mass positively correlated with the proportion of Artemisia frigida grass. Further analyses indicated that grasshopper performance is closely associated with plant stoichiometric traits that might be responsible for the pest's plague. CONCLUSIONS: This study provides valuable information for managing grasshoppers using rational grassland management practices.


Subject(s)
Grasshoppers , Plague , Animals , China , Female , Grassland , Male , Plants , Poaceae
15.
G3 (Bethesda) ; 9(10): 3287-3296, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31405890

ABSTRACT

Egg diapause in Locusta migratoria L. (Orthoptera: Acridoidea) is believed to be influenced by maternal photoperiod. However, the molecular mechanism regulating the phenomenon of maternal diapause induction is unclear. Here we performed transcriptomic analyses from the central nervous system (CNS) of migratory locusts under long and short photoperiods to identify differentially expressed genes (DEGs) related to diapause induction. There were total of 165750 unigenes from 569491 transcripts, and 610 DEGs were obtained in S_CNS (CNS of short photoperiod treated locusts) vs. L_CNS (CNS of long photoperiod treated locusts). Of these, 360 were up-regulated, 250 were down-regulated, and 84 DEGs were found to be related to FOXO signaling pathways, including citrate cycle/TCA cycle, glycolysis/ gluconeogenesis, oxidative phosphorylation, and PI3K-Akt. The qRT-PCR validation of mRNA expression of 12 randomly selected DEGs showed consistency with transcriptome analysis. Furthermore, the takeout gene thought to be involved in circadian rhythm was cloned and used for RNAi to observe its function in maternal diapause induction. We found that the mRNA level of Lm-takeout was significantly lower in dstakeout treatments as compared to the control under both long and short photoperiods. Similarly, the offspring diapause rate was significantly higher in dstakeout treatment as compared to the control only in short photoperiod. This shows that the Lm-takeout gene might be involved in the inhibition of maternal diapause induction of L. migratoria under short photoperiods. The present study provides extensive data of the CNS transcriptome and particular insights into the molecular mechanisms of maternal effects on egg diapause of L. migratoria As well for the future, the researchers can explore other factors and genes that may promote diapause in insect species.


Subject(s)
Central Nervous System/metabolism , Diapause, Insect/genetics , Gene Expression Profiling , Locusta migratoria/physiology , Transcriptome , Animals , Computational Biology/methods , Databases, Genetic , Gene Ontology , Gene Regulatory Networks , Genomics/methods , Molecular Sequence Annotation , Oxidative Phosphorylation , Signal Transduction
16.
FEBS Lett ; 593(21): 3064-3074, 2019 11.
Article in English | MEDLINE | ID: mdl-31323140

ABSTRACT

Diapause is an important overwintering strategy enabling Locusta migratoria to survive under stressed conditions. We identified a novel dual-specificity kinase gene that is differentially expressed between long and short day-treated L. migratoria. To determine its function on photoperiodic diapause induction, we cloned the specific gene. Interestingly, phylogenetic analysis shows that this dual-specificity kinase is of the mycetozoa protein kinase-like (MPKL) type and may have been transferred horizontally from Mycetozoa to L. migratoria. RNA interference results confirm that MPKL promotes photoperiodic diapause induction of L. migratoria. Furthermore, MPKL significantly inhibits Akt and FOXO (i.e. forkhead box protein O) phosphorylation levels in ovaries, and also enhances reactive oxygen species, superoxide dismutase and catalase activities, whereas peroxidase activity is decreased under both photoperiodic regimes. The findings of the present study offer insight into the molecular mechanism responsible for dual-specificity kinase-induced diapause in insects.


Subject(s)
Cloning, Molecular/methods , Locusta migratoria/physiology , Protein Kinases/genetics , Protein Kinases/metabolism , Animals , Diapause , Evolution, Molecular , Female , Forkhead Transcription Factors/metabolism , Gene Transfer, Horizontal , Insect Proteins/genetics , Insect Proteins/metabolism , Locusta migratoria/enzymology , Ovary/metabolism , Photoperiod , Phylogeny , Proto-Oncogene Proteins c-akt/metabolism
17.
Front Physiol ; 10: 767, 2019.
Article in English | MEDLINE | ID: mdl-31275172

ABSTRACT

Diapause hormone (DH) neuropeptides in insects are produced by the genes belonging to pban/capa family. Previous studies show that DH contains a conserved sequence of WFGPRXa that plays vital role in diapause regulation of some Lepidopteran species. However, the function of DH in other species is still unknown. In order to expand our understanding of DH function in diapause induction, Lom-pban, Lom-capa, and five candidates DH precursor genes (Lom-dh1, Lom-dh2, Lom-dh3, Lom-dh4, Lom-dh5) of Locusta migratoria L. were subsequently cloned. We identified Lom-dh1 to Lom-dh5 as novel genes that encoded five types (type I-V) of 44 tandem repeats of DH-like neuropeptides, which might promote egg diapause of L. migratoria. To test this hypothesis, we identified four types of eight new neuropeptides encoded by Lom-dh using liquid chromatography-tandem mass spectrometry from the central neuron system of L. migratoria under both short (10:14 L:D) and long (16:8 L:D) photoperiods. Later on, we synthesized four type I DH-like neuropeptides, LDH1, SDH1, LDH2, and SDH2, encoded by Lom-dh2/Lom-dh3 and injected them into fifth instar female locusts. Egg diapause incidences were observed after female oviposition. The four DH-like neuropeptides significantly increased the incidence of egg diapause under the short photoperiod, but the response was absent under the long photoperiod. Injection of dsLom-dh into female adults of L. migratoria under the short photoperiod could inhibit egg diapause, with no response under the long photoperiod. This study identified a new member of pban/capa family being the second example beside Bombyx mori, where the DH showed significant role on maternal induction of diapause.

18.
3 Biotech ; 9(6): 241, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31168434

ABSTRACT

To minimize dependency on chemical pesticides, plant breeders are trying to emphasize on important agricultural pests for the development of pest resistant cultivars. However, the molecular approach and associated genetic tools conferring resistance have not been widely studied. In the current study, proteomic analysis of two of the alfalfa cultivars viz. a resistant (R) (Zhongmu-1) and a susceptible (S) (WL343), with (+ A) and without (- A) aphids rearing were carried out. Results indicated that 325 differentially expressed proteins (DEPs) up-regulated while 319 down-regulated with a pattern of R + A/R - A plants, whereas 371 up- and 583 down-regulated DEPs were identified in the S + A/S - A plants. Total number of DEPs found in (S + A/S - A) was around 19.7% greater than that of (R + A/R - A), whereas, the down-regulated DEPs of susceptible variety was 11.6% higher than the resistant cultivar. Applying the KEGG analysis, 96 and 142 DEPs were portrayed to 15 and 10 substantively augmented pathways for Zhongmu-1 and WL343, respectively. We also found that two of the shared pathways (carbon metabolism and pyruvate metabolism) are linking to important traits conferring resistance in alfalfa. Most importantly, the specific role of linoleic acid metabolism was found to be associated with jasmonic acid, flavonoid biosynthesis, and terpenoid backbone biosynthesis that might have been associated with the insect-resistant material synthesis in the resistant alfalfa cultivar. Our study suggested that both alfalfa cultivars (R, S) could govern protein expression through carbon and pyruvate metabolism. But only the resistant alfalfa cultivar (Zhongmu-1) can tune protein expression via linoleic acid metabolism and terpenoid backbone biosynthesis to induce the defensive protein expressions (e.g., jasmonic acid and flavonoid biosynthesis along with terpenoid backbone biosynthesis), to enhance plant defense capacity.

19.
Insects ; 10(6)2019 May 30.
Article in English | MEDLINE | ID: mdl-31151291

ABSTRACT

The spotted alfalfa aphid (Therioaphis trifolii (Monell)) is a known destructive pest that can significantly reduce alfalfa yields. Two differentially up-regulated alfalfa trypsin inhibitors 'Msti-94' and 'Msti-16' in transcriptome were verified in terms of their mRNA levels using RT-qPCR. The prokaryotic expression vector was constructed and its biological functions, including phenotypic and physiological responses, were verified through feeding spotted alfalfa aphids with active recombinant protein mixed with an artificial diet. Gene clone and gene prokaryotic expression confirmed that Msti-94 had a size of 651 bp, encoded 216 amino acids with a predicted protein weight of 23.5 kDa, and a pI value of 6.91. Similarly, the size of Msti-16 was 612 bp, encoded 203 amino acids, and had a predicted protein weight of 22.2 kDa with a pI value of 9.06. We concluded that both Msti-94 and Msti-16 acted as a stomach poison with survival rates reduced to 21.7% and 18.3%, respectively, as compared to the control, where the survival rate was significantly (p < 0.05) higher (60.0%). Aphid reproduction rates were significantly reduced, after 72 h of feeding, in both the Msti-94 and Msti-16 treatments compared to the controls. A concentration of 800 µg/mL (0.8 mg/mL) of recombinant protein and 5000 µg/mL (5 mg/mL) of recombinant expressing bacteria that inhibits the total protease, which ultimately disrupted the activity of trypsin, chymotrypsin, and aminopeptidase.

20.
Front Physiol ; 10: 531, 2019.
Article in English | MEDLINE | ID: mdl-31130873

ABSTRACT

Diets essentially affect the ecological distribution of insects, and may contribute to or even accelerate pest plague outbreaks. The grasshopper, Oedaleus asiaticus B-Bienko (OA), is a persistent pest occurring in northern Asian grasslands. Migration and plague of this grasshopper is tightly related to two specific food plants, Stipa krylovii Roshev and Leymus chinensis (Trin.) Tzvel. However, how these diets regulate and contribute to plague is not clearly understood. Ecological studies have shown that L. chinensis is detrimental to OA growth due to the presence of high secondary metabolites, and that S. krylovii is beneficial because of the low levels of secondary metabolites. Moreover, in field habitats consisting mainly of these two grasses, OA density has negative correlation to high secondary metabolites and a positive correlation to nutrition content for high energy demand. These two grasses act as a 'push-pull,' thus enabling the grasshopper plague. Molecular analysis showed that gene expression and protein phosphorylation level of the IGF → FOXO cascade in the insulin-like signaling pathway (ILP) of OA negatively correlated to dietary secondary metabolites. High secondary metabolites in L. chinensis down-regulates the ILP pathway that generally is detrimental to insect survival and growth, and benefits insect detoxification with high energy cost. The changed ILP could explain the poor growth of grasshoppers and fewer distributions in the presence of L. chinensis. Plants can substantially affect grasshopper gene expression, protein function, growth, and ecological distribution. Down-regulation of grasshopper ILP due to diet stress caused by high secondary metabolites containing plants, such as L. chinensis, results in poor grasshopper growth and consequently drives grasshopper migration to preferable diet, such as S. krylovii, thus contributing to grasshopper plague outbreaks.

SELECTION OF CITATIONS
SEARCH DETAIL
...