Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 892: 164732, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37290642

ABSTRACT

Short-term high-concentration exposure to airborne fine particulate matter (PM2.5) is strongly associated with the risk of acute lung injury (ALI). It has been recently reported that exosomes (Exos) involve in the progression of respiratory diseases. However, the molecular mechanisms by which exosome-mediated intercellular signaling exacerbate PM2.5-induced ALI remains largely unaddressed. In the present study, we firstly investigated the effect of macrophage-derived exosomal tumor necrosis factor α (TNF-α) on pulmonary surfactant proteins (SPs) expression in epithelial MLE-12 cells after PM2.5 exposure. The higher levels of exosomes in the bronchoalveolar lavage fluid (BALF) of PM2.5-induced ALI mice were found. BALF-exosomes significantly up-regulated SPs expression in MLE-12 cells. Moreover, we found that remarkably high expression of TNF-α in exosomes secreted by PM2.5-treated RAW264.7 cells. Exosomal TNF-α promoted thyroid transcription factor-1 (TTF-1) activation and SPs expression in MLE-12 cells. Furthermore, intratracheal instillation of macrophage-derived TNF-α-containing exosomes increased epithelial cell SPs expression in the lungs of mice. Taken together, these results suggest that macrophages-secreted exosomal TNF-α can trigger epithelial cell SPs expression, which provides new insight and potential target in the mechanism of epithelial cell dysfunction in PM2.5-induced ALI.


Subject(s)
Acute Lung Injury , Pulmonary Surfactants , Animals , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Lung/metabolism , Macrophages/metabolism , Particulate Matter/toxicity , Pulmonary Surfactants/metabolism , Pulmonary Surfactants/toxicity , Tumor Necrosis Factor-alpha/metabolism
2.
Food Sci Biotechnol ; 29(3): 409-418, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32257525

ABSTRACT

Since the thermoacidophilic raw-starch hydrolyzing α-amylase Gt-amy can effectively hydrolyze corn starch under starch liquefaction conditions, it has potential for many industrial applications. To identify the raw starch-binding domain of Gt-amy, a C-terminal domain (CTD)-truncated mutant (Gt-amy-T) was constructed, and its enzymatic properties were compared with Gt-amy. In comparison to CTD of Gt-amy, which could effectively bind corn starch, the Gt-amy-T could not bind to and hydrolyze corn starch under similar conditions. In addition, Gt-amy-T showed significantly lower thermal activity and thermal stability. Using soluble starch as the substrate, the k cat of Gt-amy-T at 80 °C was approximately 77.9% of that of Gt-amy. The half-life of Gt-amy at 80 °C was 3 h, while that of Gt-amy-T was 2 h. These results reveal that the CTD plays a vital role in raw starch binding and degradation by Gt-amy and helps Gt-amy maintain thermal activity and stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...