Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3647, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684822

ABSTRACT

Terrestrial self-reconfigurable robot swarms offer adaptable solutions for various tasks. However, most existing swarms are limited to controlled indoor settings, and often compromise stability due to their freeform connections. To address these issues, we present a snail robotic swarm system inspired by land snails, tailored for unstructured environments. Our system also employs a two-mode connection mechanism, drawing from the adhesive capabilities of land snails. The free mode, mirroring a snail's natural locomotion, leverages magnet-embedded tracks for freeform mobility, thereby enhancing adaptability and efficiency. The strong mode, analogous to a snail's response to disturbance, employs a vacuum sucker with directional polymer stalks for robust adhesion. By assigning specific functions to each mode, our system achieves a balance between mobility and secure connections. Outdoor experiments demonstrate the capabilities of individual robots and the exceptional synergy within the swarm. This research advances the real-world applications of terrestrial robotic swarms in unstructured environments.

2.
Nat Commun ; 11(1): 2046, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32341340

ABSTRACT

We constructed an intelligent cloud lab that integrates lab automation with cloud servers and artificial intelligence (AI) to detect chirality in perovskites. Driven by the materials acceleration operating system in cloud (MAOSIC) platform, on-demand experimental design by remote users was enabled in this cloud lab. By employing artificial intelligence of things (AIoT) technology, synthesis, characterization, and parameter optimization can be autonomously achieved. Through the remote collaboration of researchers, optically active inorganic perovskite nanocrystals (IPNCs) were first synthesized with temperature-dependent circular dichroism (CD) and inversion control. The inter-structure (structural patterns) and intra-structure (screw dislocations) dual-pattern-induced mechanisms detected by MAOSIC were comprehensively investigated, and offline theoretical analysis revealed the thermodynamic mechanism inside the materials. This self-driving cloud lab enables efficient and reliable collaborations across the world, reduces the setup costs of in-house facilities, combines offline theoretic analysis, and is practical for accelerating the speed of material discovery.

3.
Adv Sci (Weinh) ; 7(7): 1901957, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32274293

ABSTRACT

A Materials Acceleration Operation System (MAOS) is designed, with unique language and compiler architecture. MAOS integrates with virtual reality (VR), collaborative robots, and a reinforcement learning (RL) scheme for autonomous materials synthesis, properties investigations, and self-optimized quality assurance. After training through VR, MAOS can work independently for labor and intensively reduces the time cost. Under the RL framework, MAOS also inspires the improved nucleation theory, and feedback for the optimal strategy, which can satisfy the demand on both of the CdSe quantum dots (QDs) emission wavelength and size distribution quality. Moreover, it can work well for extensive coverages of inorganic nanomaterials. MAOS frees the experimental researchers out of the tedious labor as well as the extensive exploration of optimal reaction conditions. This work provides a walking example for the "On-Demand" materials synthesis system, and demonstrates how artificial intelligence technology can reshape traditional materials science research in the future.

4.
J Phys Chem A ; 122(46): 9142-9148, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30395457

ABSTRACT

The new era with prosperous artificial intelligence (AI) and robotics technology is reshaping the materials discovery process in a more radical fashion. Here we present authentic intelligent robotics for chemistry (AIR-Chem), integrated with technological innovations in the AI and robotics fields, functionalized with modules including gradient descent-based optimization frameworks, multiple external field modulations, a real-time computer vision (CV) system, and automated guided vehicle (AGV) parts. AIR-Chem is portable and remotely controllable by cloud computing. AIR-Chem can learn the parametric procedures for given targets and carry on laboratory operations in standalone mode, with high reproducibility, precision, and availability for knowledge regeneration. Moreover, an improved nucleation theory of size focusing on inorganic perovskite quantum dots (IPQDs) is theoretically proposed and experimentally testified to by AIR-Chem. This work aims to boost the process of an unmanned chemistry laboratory from the synthesis of chemical materials to the analysis of physical chemical properties, and it provides a vivid demonstration for future chemistry reshaped by AI and robotics technology.

SELECTION OF CITATIONS
SEARCH DETAIL