Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neurology ; 78(22): 1714-20, 2012 May 29.
Article in English | MEDLINE | ID: mdl-22459677

ABSTRACT

OBJECTIVE: To identify the gene responsible for 14q32-linked dominant spinal muscular atrophy with lower extremity predominance (SMA-LED, OMIM 158600). METHODS: Target exon capture and next generation sequencing was used to analyze the 73 genes in the 14q32 linkage interval in 3 SMA-LED family members. Candidate gene sequencing in additional dominant SMA families used PCR and pooled target capture methods. Patient fibroblasts were biochemically analyzed. RESULTS: Regional exome sequencing of all candidate genes in the 14q32 interval in the original SMA-LED family identified only one missense mutation that segregated with disease state-a mutation in the tail domain of DYNC1H1 (I584L). Sequencing of DYNC1H1 in 32 additional probands with lower extremity predominant SMA found 2 additional heterozygous tail domain mutations (K671E and Y970C), confirming that multiple different mutations in the same domain can cause a similar phenotype. Biochemical analysis of dynein purified from patient-derived fibroblasts demonstrated that the I584L mutation dominantly disrupted dynein complex stability and function. CONCLUSIONS: We demonstrate that mutations in the tail domain of the heavy chain of cytoplasmic dynein (DYNC1H1) cause spinal muscular atrophy and provide experimental evidence that a human DYNC1H1 mutation disrupts dynein complex assembly and function. DYNC1H1 mutations were recently found in a family with Charcot-Marie-Tooth disease (type 2O) and in a child with mental retardation. Both of these phenotypes show partial overlap with the spinal muscular atrophy patients described here, indicating that dynein dysfunction is associated with a range of phenotypes in humans involving neuronal development and maintenance.


Subject(s)
Chromosomes, Human, Pair 14 , Cytoplasmic Dyneins/genetics , Genes, Dominant , Lower Extremity , Mutation, Missense , Polymorphism, Single Nucleotide , Spinal Muscular Atrophies of Childhood/genetics , Child, Preschool , Chromosomes, Human, Pair 14/genetics , Cytoplasmic Dyneins/metabolism , Female , Genes, Dominant/genetics , Humans , Infant , Male , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...