Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Neuron ; 111(20): 3154-3175, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37467748

ABSTRACT

One of the most captivating questions in neuroscience revolves around the brain's ability to efficiently and durably capture and store information. It must process continuous input from sensory organs while also encoding memories that can persist throughout a lifetime. What are the cellular-, subcellular-, and network-level mechanisms that underlie this remarkable capacity for long-term information storage? Furthermore, what contributions do distinct types of GABAergic interneurons make to this process? As the hippocampus plays a pivotal role in memory, our review focuses on three aspects: (1) delineation of hippocampal interneuron types and their connectivity, (2) interneuron plasticity, and (3) activity patterns of interneurons during memory-related rhythms, including the role of long-range interneurons and disinhibition. We explore how these three elements, together showcasing the remarkable diversity of inhibitory circuits, shape the processing of memories in the hippocampus.


Subject(s)
Hippocampus , Interneurons , Interneurons/physiology , Hippocampus/physiology
2.
Elife ; 112022 10 12.
Article in English | MEDLINE | ID: mdl-36222301

ABSTRACT

After many professional twists and turns, a researcher in his forties reconsiders what it means to 'make it' in science.


Subject(s)
Academic Success , Health Personnel , Humans , Research Personnel
3.
Physiol Rev ; 102(2): 653-688, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34254836

ABSTRACT

The hippocampal formation is critically involved in learning and memory and contains a large proportion of neurons encoding aspects of the organism's spatial surroundings. In the medial entorhinal cortex (MEC), this includes grid cells with their distinctive hexagonal firing fields as well as a host of other functionally defined cell types including head direction cells, speed cells, border cells, and object-vector cells. Such spatial coding emerges from the processing of external inputs by local microcircuits. However, it remains unclear exactly how local microcircuits and their dynamics within the MEC contribute to spatial discharge patterns. In this review we focus on recent investigations of intrinsic MEC connectivity, which have started to describe and quantify both excitatory and inhibitory wiring in the superficial layers of the MEC. Although the picture is far from complete, it appears that these layers contain robust recurrent connectivity that could sustain the attractor dynamics posited to underlie grid pattern formation. These findings pave the way to a deeper understanding of the mechanisms underlying spatial navigation and memory.


Subject(s)
Entorhinal Cortex/blood supply , Entorhinal Cortex/physiology , Hippocampus/blood supply , Pyramidal Cells/physiology , Action Potentials/physiology , Animals , Humans , Learning/physiology , Neurons/physiology
4.
Elife ; 102021 03 31.
Article in English | MEDLINE | ID: mdl-33789079

ABSTRACT

Serotonin (5-HT) is one of the major neuromodulators present in the mammalian brain and has been shown to play a role in multiple physiological processes. The mechanisms by which 5-HT modulates cortical network activity, however, are not yet fully understood. We investigated the effects of 5-HT on slow oscillations (SOs), a synchronized cortical network activity universally present across species. SOs are observed during anesthesia and are considered to be the default cortical activity pattern. We discovered that (±)3,4-methylenedioxymethamphetamine (MDMA) and fenfluramine, two potent 5-HT releasers, inhibit SOs within the entorhinal cortex (EC) in anesthetized mice. Combining opto- and pharmacogenetic manipulations with in vitro electrophysiological recordings, we uncovered that somatostatin-expressing (Sst) interneurons activated by the 5-HT2A receptor (5-HT2AR) play an important role in the suppression of SOs. Since 5-HT2AR signaling is involved in the etiology of different psychiatric disorders and mediates the psychological effects of many psychoactive serotonergic drugs, we propose that the newly discovered link between Sst interneurons and 5-HT will contribute to our understanding of these complex topics.


Subject(s)
Entorhinal Cortex/physiology , Interneurons/physiology , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin/metabolism , Animals , Mice
5.
Nat Commun ; 11(1): 3472, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32636375

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Front Syst Neurosci ; 14: 22, 2020.
Article in English | MEDLINE | ID: mdl-32457582

ABSTRACT

In the course of a day, brain states fluctuate, from conscious awake information-acquiring states to sleep states, during which previously acquired information is further processed and stored as memories. One hypothesis is that memories are consolidated and stored during "offline" states such as sleep, a process thought to involve transfer of information from the hippocampus to other cortical areas. Up and Down states (UDS), patterns of activity that occur under anesthesia and sleep states, are likely to play a role in this process, although the nature of this role remains unclear. Here we review what is currently known about these mechanisms in three anatomically distinct but interconnected cortical areas: somatosensory cortex, entorhinal cortex, and the hippocampus. In doing so, we consider the role of this activity in the coordination of "replay" during sleep states, particularly during hippocampal sharp-wave ripples. We conclude that understanding the generation and propagation of UDS may provide key insights into the cortico-hippocampal dialogue linking archi- and neocortical areas during memory formation.

7.
Nat Commun ; 11(1): 1947, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32327634

ABSTRACT

Bouts of high frequency activity known as sharp wave ripples (SPW-Rs) facilitate communication between the hippocampus and neocortex. However, the paths and mechanisms by which SPW-Rs broadcast their content are not well understood. Due to its anatomical positioning, the granular retrosplenial cortex (gRSC) may be a bridge for this hippocampo-cortical dialogue. Using silicon probe recordings in awake, head-fixed mice, we show the existence of SPW-R analogues in gRSC and demonstrate their coupling to hippocampal SPW-Rs. gRSC neurons reliably distinguished different subclasses of hippocampal SPW-Rs according to ensemble activity patterns in CA1. We demonstrate that this coupling is brain state-dependent, and delineate a topographically-organized anatomical pathway via VGlut2-expressing, bursty neurons in the subiculum. Optogenetic stimulation or inhibition of bursty subicular cells induced or reduced responses in superficial gRSC, respectively. These results identify a specific path and underlying mechanisms by which the hippocampus can convey neuronal content to the neocortex during SPW-Rs.


Subject(s)
Brain Waves/physiology , Hippocampus/physiology , Neocortex/physiology , Animals , CA1 Region, Hippocampal/physiology , Mice , Mice, Transgenic , Neural Pathways/physiology , Neurons/metabolism , Neurons/physiology , Synaptic Transmission , Vesicular Glutamate Transport Protein 2/genetics , Vesicular Glutamate Transport Protein 2/metabolism , Wakefulness/physiology
8.
Nat Commun ; 10(1): 217, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30644388

ABSTRACT

In demyelinating diseases including multiple sclerosis (MS), neural stem cells (NSCs) can replace damaged oligodendrocytes if the local microenvironment supports the required differentiation process. Although chitinase-like proteins (CLPs) form part of this microenvironment, their function in this differentiation process is unknown. Here, we demonstrate that murine Chitinase 3-like-3 (Chi3l3/Ym1), human Chi3L1 and Chit1 induce oligodendrogenesis. In mice, Chi3l3 is highly expressed in the subventricular zone, a stem cell niche of the adult brain, and in inflammatory brain lesions during experimental autoimmune encephalomyelitis (EAE). We find that silencing Chi3l3 increases severity of EAE. We present evidence that in NSCs Chi3l3 activates the epidermal growth factor receptor (EGFR), thereby inducing Pyk2-and Erk1/2- dependent expression of a pro-oligodendrogenic transcription factor signature. Our results implicate CLP-EGFR-Pyk2-MEK-ERK as a key intrinsic pathway controlling oligodendrogenesis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/etiology , ErbB Receptors/metabolism , Lectins/metabolism , Neural Stem Cells/metabolism , Oligodendroglia/metabolism , beta-N-Acetylhexosaminidases/metabolism , Animals , Chitinase-3-Like Protein 1/metabolism , Female , HEK293 Cells , Hexosaminidases/metabolism , Humans , MAP Kinase Signaling System , Mice
9.
Nat Commun ; 9(1): 4611, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30397200

ABSTRACT

Optogenetics enables manipulation of biological processes with light at high spatio-temporal resolution to control the behavior of cells, networks, or even whole animals. In contrast to the performance of excitatory rhodopsins, the effectiveness of inhibitory optogenetic tools is still insufficient. Here we report a two-component optical silencer system comprising photoactivated adenylyl cyclases (PACs) and the small cyclic nucleotide-gated potassium channel SthK. Activation of this 'PAC-K' silencer by brief pulses of low-intensity blue light causes robust and reversible silencing of cardiomyocyte excitation and neuronal firing. In vivo expression of PAC-K in mouse and zebrafish neurons is well tolerated, where blue light inhibits neuronal activity and blocks motor responses. In combination with red-light absorbing channelrhodopsins, the distinct action spectra of PACs allow independent bimodal control of neuronal activity. PAC-K represents a reliable optogenetic silencer with intrinsic amplification for sustained potassium-mediated hyperpolarization, conferring high operational light sensitivity to the cells of interest.


Subject(s)
Optogenetics/methods , Potassium Channels/genetics , Potassium Channels/metabolism , Potassium Channels/radiation effects , Silencer Elements, Transcriptional , Adenylyl Cyclases/genetics , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/radiation effects , Animals , Animals, Genetically Modified , Channelrhodopsins/radiation effects , Gene Expression/genetics , Gene Expression/radiation effects , HEK293 Cells , Humans , Light , Mice , Models, Animal , Myocytes, Cardiac/metabolism , Neurons/metabolism , Neurons/radiation effects , Rhodopsin/pharmacology , Zebrafish
10.
J Neurosci ; 36(7): 2289-301, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26888938

ABSTRACT

The parasubiculum is a major input structure of layer 2 of medial entorhinal cortex, where most grid cells are found. Here we investigated parasubicular circuits of the rat by anatomical analysis combined with juxtacellular recording/labeling and tetrode recordings during spatial exploration. In tangential sections, the parasubiculum appears as a linear structure flanking the medial entorhinal cortex mediodorsally. With a length of ∼5.2 mm and a width of only ∼0.3 mm (approximately one dendritic tree diameter), the parasubiculum is both one of the longest and narrowest cortical structures. Parasubicular neurons span the height of cortical layers 2 and 3, and we observed no obvious association of deep layers to this structure. The "superficial parasubiculum" (layers 2 and 1) divides into ∼15 patches, whereas deeper parasubicular sections (layer 3) form a continuous band of neurons. Anterograde tracing experiments show that parasubicular neurons extend long "circumcurrent" axons establishing a "global" internal connectivity. The parasubiculum is a prime target of GABAergic and cholinergic medial septal inputs. Other input structures include the subiculum, presubiculum, and anterior thalamus. Functional analysis of identified and unidentified parasubicular neurons shows strong theta rhythmicity of spiking, a large fraction of head-direction selectivity (50%, 34 of 68), and spatial responses (grid, border and irregular spatial cells, 57%, 39 of 68). Parasubicular output preferentially targets patches of calbindin-positive pyramidal neurons in layer 2 of medial entorhinal cortex, which might be relevant for grid cell function. These findings suggest the parasubiculum might shape entorhinal theta rhythmicity and the (dorsoventral) integration of information across grid scales. SIGNIFICANCE STATEMENT: Grid cells in medial entorhinal cortex (MEC) are crucial components of an internal navigation system of the mammalian brain. The parasubiculum is a major input structure of layer 2 of MEC, where most grid cells are found. Here we provide a functional and anatomical characterization of the parasubiculum and show that parasubicular neurons display unique features (i.e., strong theta rhythmicity of firing, prominent head-direction selectivity, and output selectively targeted to layer 2 pyramidal cell patches of MEC). These features could contribute to shaping the temporal and spatial code of downstream grid cells in entorhinal cortex.


Subject(s)
Entorhinal Cortex/anatomy & histology , Hippocampus/anatomy & histology , Animals , Calbindins/metabolism , Dendritic Spines , Electrodes , Entorhinal Cortex/cytology , Female , Hippocampus/cytology , Male , Neural Pathways/anatomy & histology , Neural Pathways/cytology , Neurons/physiology , Pyramidal Cells/metabolism , Rats , Rats, Long-Evans , Rats, Wistar , Space Perception/physiology , Thalamus/anatomy & histology , Thalamus/cytology , Theta Rhythm
11.
J Neurosci ; 35(46): 15391-5, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26586825

ABSTRACT

The presubiculum provides a major input to the medial entorhinal cortex (MEC) and contains cells that encode for the animal's head direction (HD), as well as other cells likely to be important for navigation and memory, including grid cells. To understand the mechanisms underlying HD cell firing and its effects on other parts of the circuit, it is important to determine the anatomical identity of these functionally defined cells. Therefore, we juxtacellularly recorded single cells in the presubiculum in freely moving rats, finding two classes of cells based on firing patterns and juxtacellular labeling (of a subset). Regular-firing cells had the anatomical characteristics of pyramidal cells and included most recorded HD cells. Therefore, HD cells are likely to be excitatory pyramidal cells. For one HD cell, we could follow an axon projecting directly to the MEC. Fast-spiking (FS) cells had the anatomical characteristics of interneurons and displayed weak HD tuning. Furthermore, FS cells displayed a surprising lack of theta-rhythmic firing, in strong contrast to the FS cells that we recorded in the MEC. Overall, we show that HD cells in the presubiculum are pyramidal cells, with FS interneurons only showing weak HD tuning; therefore, MEC may receive an excitatory HD input, as previously assumed by many models. The lack of theta rhythmicity in FS interneurons suggests that different mechanisms may underlie theta in different parts of the hippocampal formation. SIGNIFICANCE STATEMENT: In freely moving rats, we recorded and labeled single neurons in the presubiculum, an area providing one of the major inputs to the medial entorhinal cortex and part of a network involved in spatial navigation and memory. Post hoc identification of labeled cells showed that (fast-spiking, FS) interneurons and pyramidal cells in the presubiculum can be distinguished based on physiological criteria. We found that both moderately and strongly tuned head-direction (HD) cells are pyramidal cells and therefore likely to provide an excitatory HD input to the entorhinal cortex. FS interneurons were weakly head directional and, surprisingly, showed no theta-rhythmic firing. Therefore, the presubiculum appears to encode HD information via excitatory pyramidal cells, possibly also involving FS interneurons, without using a theta-rhythmic temporal code.


Subject(s)
Head Movements/physiology , Neurons/physiology , Orientation/physiology , Parahippocampal Gyrus/cytology , Theta Rhythm/physiology , Action Potentials/physiology , Animals , Male , Parvalbumins , Rats , Rats, Wistar
12.
Nat Neurosci ; 16(12): 1802-1811, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24141313

ABSTRACT

Hippocampal sharp waves are population discharges initiated by an unknown mechanism in pyramidal cell networks of CA3. Axo-axonic cells (AACs) regulate action potential generation through GABAergic synapses on the axon initial segment. We found that CA3 AACs in anesthetized rats and AACs in freely moving rats stopped firing during sharp waves, when pyramidal cells fire most. AACs fired strongly and rhythmically around the peak of theta oscillations, when pyramidal cells fire at low probability. Distinguishing AACs from other parvalbumin-expressing interneurons by their lack of detectable SATB1 transcription factor immunoreactivity, we discovered a somatic GABAergic input originating from the medial septum that preferentially targets AACs. We recorded septo-hippocampal GABAergic cells that were activated during hippocampal sharp waves and projected to CA3. We hypothesize that inhibition of AACs, and the resulting subcellular redistribution of inhibition from the axon initial segment to other pyramidal cell domains, is a necessary condition for the emergence of sharp waves promoting memory consolidation.


Subject(s)
Axons/physiology , CA3 Region, Hippocampal/cytology , Nerve Net/physiology , Neural Inhibition/physiology , Pyramidal Cells/physiology , Action Potentials/drug effects , Action Potentials/physiology , Animals , Arabidopsis Proteins/metabolism , Axons/ultrastructure , Biotin/analogs & derivatives , Biotin/metabolism , Brain Waves/physiology , Dendrites/metabolism , Dendrites/ultrastructure , Interneurons/metabolism , Interneurons/physiology , Male , Matrix Attachment Region Binding Proteins/metabolism , Nerve Net/metabolism , Nerve Net/ultrastructure , Neural Pathways/physiology , Parvalbumins/metabolism , Periodicity , Rats , Rats, Sprague-Dawley , Transcription Factors/metabolism , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism , gamma-Aminobutyric Acid/metabolism
13.
J Neurosci ; 33(16): 6809-25, 2013 Apr 17.
Article in English | MEDLINE | ID: mdl-23595740

ABSTRACT

Hippocampal CA3 area generates temporally structured network activity such as sharp waves and gamma and theta oscillations. Parvalbumin-expressing basket cells, making GABAergic synapses onto cell bodies and proximal dendrites of pyramidal cells, control pyramidal cell activity and participate in network oscillations in slice preparations, but their roles in vivo remain to be tested. We have recorded the spike timing of parvalbumin-expressing basket cells in areas CA2/3 of anesthetized rats in relation to CA3 putative pyramidal cell firing and activity locally and in area CA1. During theta oscillations, CA2/3 basket cells fired on the same phase as putative pyramidal cells, but, surprisingly, significantly later than downstream CA1 basket cells. This indicates a distinct modulation of CA3 and CA1 pyramidal cells by basket cells, which receive different inputs. We observed unexpectedly large dendritic arborization of CA2/3 basket cells in stratum lacunosum moleculare (33% of length, 29% surface, and 24% synaptic input from a total of ∼35,000), different from the dendritic arborizations of CA1 basket cells. Area CA2/3 basket cells fired phase locked to both CA2/3 and CA1 gamma oscillations, and increased firing during CA1 sharp waves, thus supporting the role of CA3 networks in the generation of gamma oscillations and sharp waves. However, during ripples associated with sharp waves, firing of CA2/3 basket cells was phase locked only to local but not CA1 ripples, suggesting the independent generation of fast oscillations by basket cells in CA1 and CA2/3. The distinct spike timing of basket cells during oscillations in CA1 and CA2/3 suggests differences in synaptic inputs paralleled by differences in dendritic arborizations.


Subject(s)
Action Potentials/physiology , CA3 Region, Hippocampal/cytology , Dendrites/physiology , Neurons/cytology , Neurons/physiology , Parvalbumins/metabolism , Animals , Biological Clocks/physiology , Biotin/analogs & derivatives , Biotin/metabolism , Calbindins , Dendrites/ultrastructure , Functional Laterality , In Vitro Techniques , Male , Microscopy, Electron, Transmission , Rats , Rats, Sprague-Dawley , Receptors, GABA-A/metabolism , S100 Calcium Binding Protein G/metabolism , Synapses/metabolism , Synapses/ultrastructure
14.
J Neurophysiol ; 108(2): 697-707, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22514297

ABSTRACT

Virtually nothing is known about the activity of morphologically identified neurons in freely moving mammals. Here we describe stabilization and positioning techniques that allow juxtacellular recordings from labeled single neurons in awake, freely moving animals. This method involves the use of a friction-based device that allows stabilization of the recording pipette by friction forces. Friction is generated by a clamplike mechanism that tightens a sliding pipette holder to a preimplanted pipette guide. The interacting surfaces are smoothed to optical quality (<5-nm roughness) to enable micrometer stepping precision of the device during operation. Our method allows recordings from identified neurons in freely moving animals, and thus opens new perspectives for analyzing the role of identified neurons in the control of behavior.


Subject(s)
Action Potentials/physiology , Brain/physiology , Electrodes, Implanted , Microelectrodes , Movement/physiology , Neurons/physiology , Animals , Equipment Design , Equipment Failure Analysis , Friction , Rats , Rats, Wistar
15.
J Neurosci ; 31(49): 18073-93, 2011 Dec 07.
Article in English | MEDLINE | ID: mdl-22159120

ABSTRACT

Hippocampal oscillations reflect coordinated neuronal activity on many timescales. Distinct types of GABAergic interneuron participate in the coordination of pyramidal cells over different oscillatory cycle phases. In the CA3 area, which generates sharp waves and gamma oscillations, the contribution of identified GABAergic neurons remains to be defined. We have examined the firing of a family of cholecystokinin-expressing interneurons during network oscillations in urethane-anesthetized rats and compared them with firing of CA3 pyramidal cells. The position of the terminals of individual visualized interneurons was highly diverse, selective, and often spatially coaligned with either the entorhinal or the associational inputs to area CA3. The spike timing in relation to theta and gamma oscillations and sharp waves was correlated with the innervated pyramidal cell domain. Basket and dendritic-layer-innervating interneurons receive entorhinal and associational inputs and preferentially fire on the ascending theta phase, when pyramidal cell assemblies emerge. Perforant-path-associated cells, driven by recurrent collaterals of pyramidal cells fire on theta troughs, when established pyramidal cell assemblies are most active. In the CA3 area, slow and fast gamma oscillations occurred on opposite theta oscillation phases. Perforant-path-associated and some COUP-TFII-positive interneurons are strongly coupled to both fast and slow gamma oscillations, but basket and dendritic-layer-innervating cells are weakly coupled to fast gamma oscillations only. During sharp waves, different interneuron types are activated, inhibited, or remain unaffected. We suggest that specialization in pyramidal cell domain and glutamatergic input-specific operations, reflected in the position of GABAergic terminals, is the evolutionary drive underlying the diversity of cholecystokinin-expressing interneurons.


Subject(s)
Action Potentials/physiology , Axons/physiology , Brain Waves/physiology , CA3 Region, Hippocampal/cytology , Cholecystokinin/metabolism , Interneurons/physiology , Analysis of Variance , Animals , Biotin/analogs & derivatives , Biotin/metabolism , Interneurons/cytology , Male , Microscopy, Confocal , Nerve Net/physiology , Rats , Rats, Sprague-Dawley , Vasoactive Intestinal Peptide/metabolism , Vesicular Glutamate Transport Proteins/metabolism
16.
J Neurosci ; 27(31): 8184-9, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17670965

ABSTRACT

Cortical gamma oscillations contribute to cognitive processing and are thought to be supported by perisomatic-innervating GABAergic interneurons. We performed extracellular recordings of identified interneurons in the hippocampal CA1 area of anesthetized rats, revealing that the firing patterns of five distinct interneuron types are differentially correlated to spontaneous gamma oscillations. The firing of bistratified cells, which target dendrites of pyramidal cells coaligned with the glutamatergic input from hippocampal area CA3, is strongly phase locked to field gamma oscillations. Parvalbumin-expressing basket, axo-axonic, and cholecystokinin-expressing interneurons exhibit moderate gamma modulation, whereas the spike timing of distal dendrite-innervating oriens-lacunosum moleculare interneurons is not correlated to field gamma oscillations. Cholecystokinin-expressing interneurons fire earliest in the gamma cycle, a finding that is consistent with their suggested function of thresholding individual pyramidal cells. Furthermore, we show that field gamma amplitude correlates with interneuronal spike-timing precision and firing rate. Overall, our recordings suggest that gamma synchronization in vivo is assisted by temporal- and domain-specific GABAergic inputs to pyramidal cells and is initiated in pyramidal cell dendrites in addition to somata and axon initial segments.


Subject(s)
Action Potentials/physiology , Biological Clocks/physiology , Interneurons/physiology , Pyramidal Cells/physiology , Animals , Hippocampus/cytology , Hippocampus/physiology , Interneurons/cytology , Male , Pyramidal Cells/cytology , Rats , Rats, Sprague-Dawley
17.
Vis Neurosci ; 21(4): 611-25, 2004.
Article in English | MEDLINE | ID: mdl-15579224

ABSTRACT

The starburst amacrine cell (SBAC), found in all mammalian retinas, is thought to provide the directional inhibitory input recorded in On-Off direction-selective ganglion cells (DSGCs). While voltage recordings from the somas of SBACs have not shown robust direction selectivity (DS), the dendritic tips of these cells display direction-selective calcium signals, even when gamma-aminobutyric acid (GABAa,c) channels are blocked, implying that inhibition is not necessary to generate DS. This suggested that the distinctive morphology of the SBAC could generate a DS signal at the dendritic tips, where most of its synaptic output is located. To explore this possibility, we constructed a compartmental model incorporating realistic morphological structure, passive membrane properties, and excitatory inputs. We found robust DS at the dendritic tips but not at the soma. Two-spot apparent motion and annulus radial motion produced weak DS, but thin bars produced robust DS. For these stimuli, DS was caused by the interaction of a local synaptic input signal with a temporally delayed "global" signal, that is, an excitatory postsynaptic potential (EPSP) that spread from the activated inputs into the soma and throughout the dendritic tree. In the preferred direction the signals in the dendritic tips coincided, allowing summation, whereas in the null direction the local signal preceded the global signal, preventing summation. Sine-wave grating stimuli produced the greatest amount of DS, especially at high velocities and low spatial frequencies. The sine-wave DS responses could be accounted for by a simple mathematical model, which summed phase-shifted signals from soma and dendritic tip. By testing different artificial morphologies, we discovered DS was relatively independent of the morphological details, but depended on having a sufficient number of inputs at the distal tips and a limited electrotonic isolation. Adding voltage-gated calcium channels to the model showed that their threshold effect can amplify DS in the intracellular calcium signal.


Subject(s)
Amacrine Cells/physiology , Models, Biological , Amacrine Cells/metabolism , Amacrine Cells/ultrastructure , Animals , Calcium/metabolism , Calcium Channels, Q-Type/metabolism , Calcium Channels, Q-Type/physiology , Computer Simulation , Dendrites/metabolism , Dendrites/physiology , Electric Impedance , Excitatory Postsynaptic Potentials , Humans , Photic Stimulation/methods
SELECTION OF CITATIONS
SEARCH DETAIL