Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 491: 44-54, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28012912

ABSTRACT

Ti6Al4V is commonly used for orthopedic applications. This study was designed to test the potentially added benefit of Ti6Al4V functionalized with a bioactive polymer poly(sodium styrene sulfonate) both in vitro and in vivo. Cell-based assays with MC3T3-E1 osteoblast-like cells were used to measure the cell adhesion strength, cell spreading, focal contact formation, cell differentiation and the mineralization of extracellular matrix on grafted and ungrafted Ti6Al4V discs in combination with FBS and collagen type I. Bone morphogenetic protein-2 (BMP-2) was also included in the cell differentiation assay. Results showed that the grafted surface combined with collagen I gave superior levels in every parameter tested with cell-based assays and was almost equivalent to BMP-2 for cell differentiation. In vivo testing was conducted in rabbits (n=42) with cylinders of grafted and ungrafted Ti6Al4V implanted in defects made to the femoral and lateral condyles and animals that were maintained to 1, 3 and 12months. Hydroxyapatite coated Ti6Al4V cylinders were included as a clinical reference control. Osseointegration was assessed post-mortem using histomorphometric analysis conducted on resin sections of explanted undecalcified bone. Two histomorphometric parameters, that of bone-to-implant contact and the bone area, were analyzed by a trained observer blinded to sample identity. Results showed osseointegration on grafted Ti6Al4V was marginally better than both ungrafted and hydroxyapatite coated Ti6Al4V. Overall, the study found that the grafted Ti6Al4V significantly promoted all aspects of osteogenesis tested in vitro and, although in vivo outcomes were less compelling, histomorphometry showed osseointegration of grafted Ti6Al4V implants was equivalent or better than controls.


Subject(s)
Bone and Bones/drug effects , Polymers/pharmacology , Titanium/pharmacology , Alloys , Animals , Bone and Bones/metabolism , Cell Differentiation/drug effects , Cells, Cultured , Female , Mice , Osteogenesis/drug effects , Polymers/chemistry , Rabbits , Surface Properties , Titanium/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...