Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34771959

ABSTRACT

The augmented demands of textile materials over time have brought challenges in the disposal of substantial volumes of waste generated during the processing and end of life of such materials. Taking into consideration environmental safety due to discarding of textile waste, it becomes critical to recuperate useful products from such waste for economic reasons. The present work deals with the preparation of porous and electrically conductive activated carbon fabric by a novel single stage method of simultaneous carbonization and physical activation of Kevlar feedstock material procured from local industries, for effective electromagnetic (EM) shielding applications. The Kevlar fabric waste was directly carbonized under a layer of charcoal without any intermediate stabilization step at 800 °C, 1000 °C, and 1200 °C, with a heating rate of 300 °C/h and without any holding time. The physical and morphological properties of the activated carbon, influenced by carbonization process parameters, were characterized from EDX, X-ray diffraction, SEM analysis, and BET analysis. Furthermore, the electrical conductivity was analyzed. Finally, the potential application of the activated material for EM shielding effectiveness was analyzed at low (below 1.5 GHz) and high (2.45 GHz) frequencies. The phenomena of multiple internal reflections and absorption of electromagnetic radiations was found dominant in the case of activated carbon fabric produced at higher carbonization temperatures.

2.
Sci Rep ; 11(1): 11032, 2021 05 26.
Article in English | MEDLINE | ID: mdl-34040087

ABSTRACT

Electromagnetically shielding textile materials, especially in professional or ordinary clothing, are used to protect an implanted pacemaker in the body. Alternatively, traditional textiles are known for their non-conductivity and transparency to an electromagnetic field. The main goal of this work was to determine whether the high moisture content (sweat) of the traditional textile structure significantly affects the resulting ability of the material to shield the electromagnetic field. Specifically, whether sufficient wetting of the traditional textile material can increase its electrical conductivity to match the electrically conductive textiles determined for shielding of the electromagnetic field. In this study, cotton and polyester knitted fabric samples were used, and two liquid medias were applied to the samples to simulate human sweating. The experiment was designed to analyse the factors that have a significant effect on the shielding effectiveness that was measured according to ASTM D4935. The following factors have a significant effect on the electromagnetic shielding effectiveness of moisturised fabric: squeezing pressure, drying time and type of liquid media. Additionally, the increase of electromagnetic shielding was up to 1 dB at 1.5 GHz frequency at the highest level of artificial sweat moisturised sample.

3.
Polymers (Basel) ; 13(4)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546483

ABSTRACT

Electromagnetic (EM) radiation is everywhere in this world and galaxy in different forms and levels. In some cases, human beings need to protect themselves from electromagnetic radiations and the same thing is also recommended for electronic devices as well. Lots of studies are there on the shielding of electromagnetic radiation interference using metals, polymers, and minerals. For protecting the human being, textile structures are playing the main role. In the textile material structure itself many types are there; each one is having its unique geometrical shape and design. In this work, the copper/nickel-coated ultrathin nonwoven fabric is prepared like a strip. The 3, 6, and 9 mm thick strips are prepared and laid at different gaps, angles, and layered to study the effect of factors on EM shielding effectiveness as per ASTM D4935-10 standard. The design of experiment has been done to analyze the three factors and three levels of the strip properties having an influence on electromagnetic shielding results. From the findings of the design of experiment (DoE) screening design, the factors are the thickness of the strips, the gap between the strips, and the strips laid angle having a statistically significant effect on electromagnetic shielding effectiveness.

SELECTION OF CITATIONS
SEARCH DETAIL
...