Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Transl Med ; 16(1): 56, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29523155

ABSTRACT

BACKGROUND: MIV-711 is a highly potent and selective cathepsin K inhibitor. The current article summarizes the therapeutic effects of MIV-711 on joint pathology in rabbits subjected to anterior cruciate ligament transection (ACLT), and the prophylactic effects on joint pathology in dogs subjected to partial medial meniscectomy, two surgical models of osteoarthritis (OA). METHODS: Starting 1 week after surgery, rabbits were dosed daily via oral gavage with either MIV-711 or vehicle (n = 7/group) for 7 weeks. The four treatment groups were: (1) sham + vehicle; (2) ACLT + vehicle; (3) ACLT + MIV-711, 30 µmol/kg and (4) ACLT + MIV-711, 100 µmol/kg. Subchondral bone and articular cartilage structures were assessed by µCT, histomorphometry, and scoring. Dogs subjected to partial medial meniscectomy received either MIV-711 (30 µmol/kg) or vehicle (n = 15/group) via oral gavage once daily, starting 1 day before meniscectomy, for 28 days. Cartilage degradation was assessed at the macroscopic and microscopic levels. The exposures of MIV-711 were assessed in both studies and biomarkers reflecting bone resorption (HP-1 in rabbits, CTX-I in dogs) and cartilage degradation (CTX-II) were measured. RESULTS: In ACLT rabbits, MIV-711 decreased HP-1 levels by up to 72% (p < 0.001) and CTX-II levels by up to 74% (p < 0.001) compared to ACLT vehicle controls. ACLT surgery significantly reduced the total thickness of the subchondral bone plate and reduced trabecular bone volume in the femur and tibia. These effects were reversed by MIV-711. ACLT resulted in cartilage thickening, which was attenuated by MIV-711. MIV-711 did not affect osteophyte formation or Mankin scores. In dogs, MIV-711 reduced CTX-I and CTX-II levels by 86% (p < 0.001) and 80% (p < 0.001), respectively. Synovial CTX-II levels were reduced by 55-57% (p < 0.001) compared to baseline. MIV-711-treated animals had 25-37% lower macroscopic scores in the femur condyles and 13-33% lower macroscopic scores in the tibial plateaus. CONCLUSIONS: MIV-711 prevents subchondral bone loss and partially attenuates cartilage pathology in two animal models of OA. These beneficial effects of MIV-711 on joint pathology are observed in conjunction with decreases in bone and cartilage biomarkers that have been shown to be clinically attainable in human. The data support the further development of MIV-711 for the treatment of OA.


Subject(s)
Anterior Cruciate Ligament Injuries/drug therapy , Cathepsin K/antagonists & inhibitors , Cysteine Proteinase Inhibitors/therapeutic use , Joints/pathology , Osteoarthritis/drug therapy , Animals , Anterior Cruciate Ligament , Biomarkers/blood , Biomarkers/urine , Bone Resorption/pathology , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cysteine Proteinase Inhibitors/blood , Cysteine Proteinase Inhibitors/pharmacokinetics , Cysteine Proteinase Inhibitors/pharmacology , Disease Models, Animal , Dogs , Female , Joints/diagnostic imaging , Joints/drug effects , Male , Organic Chemicals , Osteoarthritis/blood , Osteoarthritis/diagnostic imaging , Osteoarthritis/pathology , Principal Component Analysis , Rabbits
2.
Pain Rep ; 3(6): e685, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30706033

ABSTRACT

INTRODUCTION: The mounting evidence that osteoclasts play an important role in osteoarthritis (OA) pain lead us to investigate the effects of L-006235, a potent and selective inhibitor of cathepsin K, on pain behaviour and joint pathology in a model of OA pain. METHODS: Effects of preventative (30 and 100 mg/kg) and therapeutic (100 mg/kg) oral dosing with L-006235 on weight-bearing asymmetry, hind paw withdrawal thresholds, cartilage and bone pathology, synovial inflammation, and drug exposure were studied in the monosodium iodoacetate rat model of OA pain. RESULTS: Preventative L-006235 inhibited weight-bearing asymmetry from day 14, with this measure nearly abolished by the higher dose. In the same treatment setting, L-006235 prevented lowering of hind paw withdrawal thresholds from day 7. Exposure to L-006235 in plasma was higher for the 100 mg/kg dose, compared with 30 mg/kg. Therapeutic dosing with L-006235 from day 14 significantly inhibited weight-bearing asymmetry, compared with monosodium iodoacetate vehicle rats. Regression analysis revealed a significant interaction coefficient of the effects of L-006235 on weight-bearing asymmetry and synovitis score, but not for cartilage damage nor osteophyte scores. CONCLUSION: Our novel finding that cathepsin K inhibition is analgesic in a clinically relevant model of OA pain provides new evidence for the therapeutic potential of this target.

3.
J Pharmacol Exp Ther ; 358(3): 387-96, 2016 09.
Article in English | MEDLINE | ID: mdl-27335437

ABSTRACT

Cathepsin S inhibitors attenuate mechanical allodynia in preclinical neuropathic pain models. The current study evaluated the effects when combining the selective cathepsin S inhibitor MIV-247 with gabapentin or pregabalin in a mouse model of neuropathic pain. Mice were rendered neuropathic by partial sciatic nerve ligation. MIV-247, gabapentin, or pregabalin were administered alone or in combination via oral gavage. Mechanical allodynia was assessed using von Frey hairs. Neurobehavioral side effects were evaluated by assessing beam walking. MIV-247, gabapentin, and pregabalin concentrations in various tissues were measured. Oral administration of MIV-247 (100-200 µmol/kg) dose-dependently attenuated mechanical allodynia by up to approximately 50% reversal when given as a single dose or when given twice daily for 5 days. No behavioral deficits were observed at any dose of MIV-247 tested. Gabapentin (58-350 µmol/kg) and pregabalin (63-377 µmol/kg) also inhibited mechanical allodynia with virtually complete reversal at the highest doses tested. The minimum effective dose of MIV-247 (100 µmol/kg) in combination with the minimum effective dose of pregabalin (75 µmol/kg) or gabapentin (146 µmol/kg) resulted in enhanced antiallodynic efficacy without augmenting side effects. A subeffective dose of MIV-247 (50 µmol/kg) in combination with a subeffective dose of pregabalin (38 µmol/kg) or gabapentin (73 µmol/kg) also resulted in substantial efficacy. Plasma levels of MIV-247, gabapentin, and pregabalin were similar when given in combination as to when given alone. Cathepsin S inhibition with MIV-247 exerts significant antiallodynic efficacy alone, and also enhances the effect of gabapentin and pregabalin without increasing side effects or inducing pharmacokinetic interactions.


Subject(s)
Amines/pharmacology , Cathepsins/antagonists & inhibitors , Cyclohexanecarboxylic Acids/pharmacology , Dipeptides/pharmacology , Hyperalgesia/drug therapy , Neuralgia/drug therapy , Pregabalin/pharmacology , Protease Inhibitors/pharmacology , gamma-Aminobutyric Acid/pharmacology , Animals , Behavior, Animal/drug effects , Dipeptides/therapeutic use , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Synergism , Gabapentin , Humans , Hyperalgesia/enzymology , Male , Mice , Neuralgia/enzymology , Protease Inhibitors/therapeutic use
4.
FEBS J ; 282(1): 65-73, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25303711

ABSTRACT

A major hallmark of Alzheimer's disease (AD) is the deposition of amyloid-ß (Aß) peptides in amyloid plaques. Aß peptides are produced by sequential cleavage of the amyloid precursor protein by the ß amyloid cleaving enzyme (BACE) and the γ-secretase (γ-sec) complex. Pharmacological treatments that decrease brain levels of in particular the toxic Aß42 peptide are thought to be promising approaches for AD disease modification. Potent and selective BACE1 inhibitors as well as γ-sec modulators (GSMs) have been designed. Pharmacological intervention of secretase function is not without risks of either on- or off-target adverse effects. One way of improving the therapeutic window could be to combine treatment on multiple targets, using smaller individual doses and thereby minimizing adverse effect liability. We show that combined treatment of primary cortical neurons with a BACE1 inhibitor and a GSM gives an additive effect on Aß42 level change compared with the individual treatments. We extend this finding to C57BL/6 mice, where the combined treatment results in reduction of brain Aß42 levels reflecting the sum of the individual treatment efficacies. These results show that pharmacological targeting of two amyloid precursor protein processing steps is feasible without negatively interfering with the mechanism of action on individual targets. We conclude that targeting Aß production by combining a BACE inhibitor and a GSM could be a viable approach for therapeutic intervention in AD modification.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/biosynthesis , Animals , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Brain/drug effects , Brain/metabolism , Drug Synergism , Female , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Peptide Fragments/metabolism , Protease Inhibitors/administration & dosage , Protease Inhibitors/pharmacology , Pyrans/administration & dosage , Pyrans/pharmacology , Pyrimidines/administration & dosage , Pyrimidines/pharmacology
5.
J Pharmacol Exp Ther ; 350(2): 469-78, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24917547

ABSTRACT

Corrected QT interval (QTc) prolongation in humans is usually predictable based on results from preclinical findings. This study confirms the signal from preclinical cardiac repolarization models (human ether-a-go-go-related gene, guinea pig monophasic action potential, and dog telemetry) on the clinical effects on the QTc interval. A thorough QT/QTc study is generally required for bioavailable pharmaceutical compounds to determine whether or not a drug shows a QTc effect above a threshold of regulatory interest. However, as demonstrated in this AZD3839 [(S)-1-(2-(difluoromethyl)pyridin-4-yl)-4-fluoro-1-(3-(pyrimidin-5-yl)phenyl)-1H-isoindol-3-amine hemifumarate] single-ascending-dose (SAD) study, high-resolution digital electrocardiogram data, in combination with adequate efficacy biomarker and pharmacokinetic data and nonlinear mixed effects modeling, can provide the basis to safely explore the margins to allow for robust modeling of clinical effect versus the electrophysiological risk marker. We also conclude that a carefully conducted SAD study may provide reliable data for effective early strategic decision making ahead of the thorough QT/QTc study.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Electrocardiography/drug effects , Indoles/pharmacology , Pyrimidines/pharmacology , Animals , Arterial Pressure/drug effects , Dogs , Dose-Response Relationship, Drug , Double-Blind Method , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/genetics , Guinea Pigs , Humans , Indoles/adverse effects , Male , Models, Biological , Pyrimidines/adverse effects
6.
Pharm Res ; 31(3): 670-83, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24092053

ABSTRACT

PURPOSE: The aims were to quantify the in vivo time-course between the oral dose, the plasma and brain exposure and the inhibitory effect on Amyloid ß (Aß) in brain and cerebrospinal fluid, and to establish the correlation between in vitro and in vivo potency of novel ß-secretase (BACE1) inhibitors. METHODS: BACE1-mediated inhibition of Aß was quantified in in vivo dose- and/or time-response studies and in vitro in SH-SY5Y cells, N2A cells, and primary cortical neurons (PCN). An indirect response model with inhibition on Aß production rate was used to estimate unbound in vivo IC 50 in a population pharmacokinetic-pharmacodynamic modeling approach. RESULTS: Estimated in vivo inhibitory potencies varied between 1 and 1,000 nM. The turnover half-life of Aß40 in brain was predicted to be 0.5 h in mouse and 1 h in guinea pig. An excellent correlation between PCN and in vivo potency was observed. Moreover, a strong correlation in potency was found between human SH-SY5Y cells and mouse PCN, being 4.5-fold larger in SH-SY5Y cells. CONCLUSION: The strong in vivo-in vitro correlation increased the confidence in using human cell lines for screening and optimization of BACE1 inhibitors. This can optimize the design and reduce the number of preclinical in vivo effect studies.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Neurons/drug effects , Alzheimer Disease/blood , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/metabolism , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/cerebrospinal fluid , Animals , Brain/cytology , Brain/drug effects , Brain/metabolism , Cell Line , Cells, Cultured , Female , Guinea Pigs , Humans , Male , Mice , Mice, Inbred C57BL , Models, Biological , Neurons/metabolism
7.
J Pharmacokinet Pharmacodyn ; 35(5): 503-26, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19011957

ABSTRACT

To characterise the pharmacokinetics of dofetilide in patients and to identify clinically relevant parameter-covariate relationships. To investigate three different modelling strategies in covariate model building using dofetilide as an example: (1) using statistical criteria only or in combination with clinical irrelevance criteria for covariate selection, (2) applying covariate effects on total clearance or separately on non-renal and renal clearances and (3) using separate data sets for covariate selection and parameter estimation. Pooled concentration-time data (1,445 patients, 10,133 observations) from phase III clinical trials was used. A population pharmacokinetic model was developed using NONMEM. Stepwise covariate model building was applied to identify important covariates using the strategies described above. Inclusion and exclusion of covariates using clinical irrelevance was based on reduction in interindividual variability and changes in parameters at the extremes of the covariate distribution. Parametric separation of the elimination pathways was accomplished using creatinine clearance as an indicator of renal function. The pooled data was split in three parts which were used for covariate selection, parameter estimation and evaluation of predictive performance. Parameter estimations were done using the first-order (FO) and the first-order conditional estimation (FOCE) methods. A one-compartment model with first order absorption adequately described the data. Using clinical irrelevance criteria resulted in models containing less parameter-covariate relationships with a minor loss in predictive power. A larger number of covariates were found significant when the elimination was divided into a renal part and a non-renal part, but no gain in predictive power could be seen with this data set. The FO and FOCE estimation methods gave almost identical final covariate model structures with similar predictive performance. Clinical irrelevance criteria may be valuable for practical reasons since stricter inclusion/exclusion criteria shortens the run times of the covariate model building procedure and because only the covariates important for the predictive performance are included in the model.


Subject(s)
Models, Statistical , Pharmacokinetics , Phenethylamines/pharmacokinetics , Sulfonamides/pharmacokinetics , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , Anti-Arrhythmia Agents/administration & dosage , Anti-Arrhythmia Agents/blood , Anti-Arrhythmia Agents/pharmacokinetics , Biomarkers/blood , Clinical Trials, Phase III as Topic/statistics & numerical data , Drug Therapy/statistics & numerical data , Female , Humans , Male , Middle Aged , Phenethylamines/administration & dosage , Phenethylamines/blood , Sulfonamides/administration & dosage , Sulfonamides/blood , Tachycardia/drug therapy , Young Adult
8.
Eur J Pharm Sci ; 24(1): 49-57, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15626577

ABSTRACT

The objective was to evaluate the influence of probenecid on the blood-brain barrier (BBB) transport of morphine-6-glucuronide (M6G). Microdialysis probes were placed in the striatum and into the jugular vein of Sprague-Dawley rats. Each probe was calibrated in vivo using retrodialysis by drug. M6G was administered as a 4-h exponential i.v. infusion, and the experiment was repeated the following day with the addition of probenecid. The data were analysed using NONMEM. An integrated model including the total arterial concentrations, the dialysate concentrations in brain and blood, and the recovery measurements, was developed. The extent of BBB transport, expressed as the ratio between clearance into the brain and clearance out of the brain (CL(in)/CL(out)), was estimated as 0.29 on both days, indicating that efflux transporters act on M6G at the BBB. However, the probenecid-sensitive transporters are not involved in the brain efflux, as the ratio was unaltered although probenecid was co-administered. In contrast, the systemic elimination of M6G decreased by 22% (p<0.05) upon probenecid co-administration. The half-life of M6G was longer in the brain than in blood on both experimental days (p<0.05). In conclusion, probenecid decreased the systemic elimination of M6G, but had no effect on the BBB transport of M6G.


Subject(s)
Brain/drug effects , Drug Delivery Systems/methods , Morphine Derivatives/administration & dosage , Probenecid/administration & dosage , Animals , Brain/metabolism , Male , Rats , Rats, Sprague-Dawley
9.
Pharm Res ; 21(9): 1698-707, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15497699

ABSTRACT

PURPOSE: To develop an integrated model for microdialysis data that incorporates all data including the recovery measurements in one model, and to compare this model to a previous model and the results from a noncompartmental analysis. METHODS: The models were developed in NONMEM. The modes of analysis were compared with respect to parameter estimates, model structures, gained mechanistic insight, and practical aspects. RESULTS: Both modeling approaches resulted in similar model structures. The parameter estimates in blood and brain from the models and the results from the noncompartmental analysis were comparable. Using the integrated model all data, that is, the total arterial concentrations, the venous and brain dialysate concentrations, and the recovery measurements, were analyzed simultaneously. CONCLUSION: The theoretical benefits of the integrated model are related to the inclusion of the recovery in the model and the use of all collected data as it was observed. Thus, all data are described in a single model, corrections for the recovery and the protein binding are done within the model, and the dialysate observations are described by the integral over each collection interval. Thereby, the variability and the uncertainty in the model parameters are handled correctly to give more reliable parameter estimates.


Subject(s)
Microdialysis , Models, Biological , Pharmacokinetics , Animals , Blood-Brain Barrier/drug effects , Morphine/pharmacokinetics , Probenecid/pharmacology , Rats
10.
Br J Clin Pharmacol ; 57(4): 427-35, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15025740

ABSTRACT

AIMS: In experimental studies, morphine pharmacokinetics is different in the brain compared with other tissues due to the properties of the blood-brain barrier, including action of efflux pumps. It was hypothesized in this clinical study that active efflux of morphine occurs also in human brain, and that brain injury would alter cerebral morphine pharmacokinetics. METHODS: Patients with traumatic brain injury, equipped with one to three microdialysis catheters in the brain and one in abdominal subcutaneous fat for metabolic monitoring, were studied. The cerebral catheter locations were classified as 'better' and 'worse' brain tissue, referring to the degree of injury. Morphine (10 mg) was infused intravenously over a 10-min period in seven patients in the intensive care setting. Tissue and plasma morphine concentrations were obtained during the subsequent 3-h period with microdialysis and regular blood sampling. RESULTS: The area under the concentration-time curve (AUC) ratio of unbound morphine in brain tissue to plasma was 0.64 (95% confidence interval 0.40, 0.87) in 'better' brain tissue (P < 0.05 vs. the subcutaneous fat/plasma ratio), 0.78 (0.49, 1.07) in 'worse' brain tissue and 1.00 (0.86, 1.13) in subcutaneous fat. The terminal half-life and T(max) were longer in the brain vs. plasma and fat, respectively. The relative recovery for morphine was higher in 'better' than in 'worse' brain tissue. The T(max) value tended to be shorter in 'worse' brain tissue. CONCLUSIONS: The unbound AUC ratio below unity in the 'better' human brain tissue demonstrates an active efflux of morphine across the blood-brain barrier. The 'worse' brain tissue shows a decrease in relative recovery for morphine and in some cases also an increase in permeability for morphine over the blood-brain barrier.


Subject(s)
Analgesics, Opioid/pharmacokinetics , Blood-Brain Barrier/metabolism , Brain Injuries/metabolism , Morphine/pharmacokinetics , Adult , Area Under Curve , Female , Half-Life , Humans , Male , Middle Aged
11.
Pharm Res ; 20(4): 618-23, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12739770

ABSTRACT

PURPOSE: The objective of this study was to investigate the possible influence of probenecid on morphine transport across the blood-brain barrier (BBB) in rats. METHODS: Microdialysis probes, calibrated using retrodialysis by drug, were placed into the striatum and jugular vein of seven Sprague-Dawley rats. Morphine was administered as a 4-h exponential infusion. The experiment was repeated the next day with the addition of probenecid, administered as a bolus dose (20 mg/kg) followed by a constant infusion (20 mg/kg/h). Models for BBB transport were built using the computer program NONMEM. RESULTS: The steady-state ratio of 0.29 +/- 0.07 of unbound morphine concentration in brain to that in blood indicates that morphine is actively effluxed at the BBB. Probenecid co-administration increased the ratio to 0.39 +/- 0.04 (p < 0.05). Models in which probenecid influenced the brain efflux clearance rather than the influx clearance, well described the data. The half-life in brain increased from 58 +/- 9 min to 115 +/- 25 min when probenecid was co-administered. Systemic clearance of morphine also decreased upon probenecid co-administration, and M3G formation was decreased. CONCLUSION: This study indicates that morphine is a substrate for the probenecid-sensitive transporters at the BBB. Co-administration of probenecid decreased the brain efflux clearance of morphine.


Subject(s)
Blood-Brain Barrier/drug effects , Morphine/administration & dosage , Morphine/pharmacokinetics , Probenecid/administration & dosage , Probenecid/pharmacokinetics , Animals , Biological Transport, Active/drug effects , Brain/drug effects , Brain/metabolism , Drug Interactions , Male , Microdialysis , Morphine/blood , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...