Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Proteomics Clin Appl ; 18(2): e2300040, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37876147

ABSTRACT

PURPOSE: Congenital disorders of glycosylation (CDG) are one of the fastest growing groups of inborn errors of metabolism. Despite the availability of next-generation sequencing techniques and advanced methods for evaluation of glycosylation, CDG screening mainly relies on the analysis of serum transferrin (Tf) by isoelectric focusing, HPLC or capillary electrophoresis. The main pitfall of this screening method is the presence of Tf protein variants within the general population. Although reports describe the role of Tf variants leading to falsely abnormal results, their significance in confounding diagnosis in patients with CDG has not been documented so far. Here, we describe two PMM2-CDG cases, in which Tf variants complicated the diagnostic. EXPERIMENTAL DESIGN: Glycosylation investigations included classical screening techniques (capillary electrophoresis, isoelectric focusing and HPLC of Tf) and various confirmation techniques (two-dimensional electrophoresis, western blot, N-glycome, UPLC-FLR/QTOF MS with Rapifluor). Tf variants were highlighted following neuraminidase treatment. Sequencing of PMM2 was performed. RESULTS: In both patients, Tf screening pointed to CDG-II, while second-line analyses pointed to CDG-I. Tf variants were found in both patients, explaining these discrepancies. PMM2 causative variants were identified in both patients. CONCLUSION AND CLINICAL RELEVANCE: We suggest that a neuraminidase treatment should be performed when a typical CDG Tf pattern is found upon initial screening analysis.


Subject(s)
Congenital Disorders of Glycosylation , Phosphotransferases (Phosphomutases)/deficiency , Humans , Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/complications , Transferrin/genetics , Transferrin/metabolism , Neuraminidase/metabolism , Glycosylation
2.
J Inherit Metab Dis ; 44(1): 193-214, 2021 01.
Article in English | MEDLINE | ID: mdl-32754920

ABSTRACT

INTRODUCTION: Long-term outcome is postulated to be different in isolated methylmalonic aciduria caused by mutations in the MMAA gene (cblA type) compared with methylmalonyl-CoA mutase deficiency (mut), but case definition was previously difficult. METHOD: Cross-sectional analysis of data from the European Registry and Network for Intoxication type Metabolic Diseases (Chafea no. December 1, 2010). RESULTS: Data from 28 cblA and 95 mut patients in most cases confirmed by mutation analysis (including 4 new mutations for cblA and 19 new mutations for mut). Metabolic crisis is the predominant symptom leading to diagnosis in both groups. Biochemical disturbances during the first crisis were similar in both groups, as well as the age at diagnosis. Z scores of body height and body weight were similar in both groups at birth, but were significantly lower in the mut group at the time of last visit. Glomerular filtration rate was significantly higher in cblA; and as a consequence, chronic renal failure and related complications were significantly less frequent and renal function could be preserved even in older patients. Neurological complications were predominantly found in the mut subgroup. Methylmalonic acidemia (MMA) levels in urine and plasma were significantly lower in cblA. 27/28 cblA patients were reported to be responsive to cobalamin, only 86% of cblA patients were treated with i.m. hydroxocobalamin. In total, 73% of cblA and 98% of mut patients followed a calculated diet with amino acid supplements in 27% (cblA) and 69% (mut). During the study interval, six patients from the mut group died, while all cblA patients survived. CONCLUSION: Although similar at first, cblA patients respond to hydroxocobalamin treatment, subsequently show significantly lower levels of MMA and a milder course than mut patients.


Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/genetics , Methylmalonyl-CoA Mutase/deficiency , Mitochondrial Membrane Transport Proteins/genetics , Vitamin B 12/metabolism , Amino Acid Metabolism, Inborn Errors/complications , Amino Acid Metabolism, Inborn Errors/enzymology , Amino Acid Metabolism, Inborn Errors/mortality , Child , Cross-Sectional Studies , Female , Glomerular Filtration Rate , Humans , Kidney Failure, Chronic/etiology , Male , Methylmalonic Acid/blood , Methylmalonic Acid/urine , Methylmalonyl-CoA Mutase/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mutation
3.
J Inherit Metab Dis ; 41(5): 765-776, 2018 09.
Article in English | MEDLINE | ID: mdl-29335813

ABSTRACT

Organic acidurias (synonym, organic acid disorders, OADs) are a heterogenous group of inherited metabolic diseases delineated with the implementation of gas chromatography/mass spectrometry in metabolic laboratories starting in the 1960s and 1970s. Biochemically, OADs are characterized by accumulation of mono-, di- and/or tricarboxylic acids ("organic acids") and corresponding coenzyme A, carnitine and/or glycine esters, some of which are considered toxic at high concentrations. Clinically, disease onset is variable, however, affected individuals may already present during the newborn period with life-threatening acute metabolic crises and acute multi-organ failure. Tandem mass spectrometry-based newborn screening programmes, in particular for isovaleric aciduria and glutaric aciduria type 1, have significantly reduced diagnostic delay. Dietary treatment with low protein intake or reduced intake of the precursor amino acid(s), carnitine supplementation, cofactor treatment (in responsive patients) and nonadsorbable antibiotics is commonly used for maintenance treatment. Emergency treatment options with high carbohydrate/glucose intake, pharmacological and extracorporeal detoxification of accumulating toxic metabolites for intensified therapy during threatening episodes exist. Diagnostic and therapeutic measures have improved survival and overall outcome in individuals with OADs. However, it has become increasingly evident that the manifestation of late disease complications cannot be reliably predicted and prevented. Conventional metabolic treatment often fails to prevent irreversible organ dysfunction with increasing age, even if patients are considered to be "metabolically stable". This has challenged our understanding of OADs and has elicited the discussion on optimized therapy, including (early) organ transplantation, and long-term care.


Subject(s)
Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/therapy , Adult , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Metabolism, Inborn Errors/mortality , Amino Acid Metabolism, Inborn Errors/urine , Brain Diseases, Metabolic/metabolism , Brain Diseases, Metabolic/urine , Glutaryl-CoA Dehydrogenase/deficiency , Glutaryl-CoA Dehydrogenase/metabolism , Glutaryl-CoA Dehydrogenase/urine , Humans , Infant, Newborn , Methylmalonic Acid/metabolism , Neonatal Screening , Predictive Value of Tests , Propionates/metabolism , Tandem Mass Spectrometry
4.
PLoS One ; 10(6): e0128770, 2015.
Article in English | MEDLINE | ID: mdl-26086473

ABSTRACT

Maleic acid (MA) has been shown to induce Fanconi syndrome via disturbance of renal energy homeostasis, though the underlying pathomechanism is still under debate. Our study aimed to examine the pathomechanism underlying maleic acid-induced nephrotoxicity. Methylmalonic acid (MMA) is structurally similar to MA and accumulates in patients affected with methymalonic aciduria, a defect in the degradation of branched-chain amino acids, odd-chain fatty acids and cholesterol, which is associated with the development of tubulointerstitial nephritis resulting in chronic renal failure. We therefore used MMA application as a control experiment in our study and stressed hPTECs with MA and MMA to further validate the specificity of our findings. MMA did not show any toxic effects on proximal tubule cells, whereas maleic acid induced concentration-dependent and time-dependent cell death shown by increased lactate dehydrogenase release as well as ethidium homodimer and calcein acetoxymethyl ester staining. The toxic effect of MA was blocked by administration of single amino acids, in particular L-alanine and L-glutamate. MA application further resulted in severe impairment of cellular energy homeostasis on the level of glycolysis, respiratory chain, and citric acid cycle resulting in ATP depletion. As underlying mechanism we could identify disturbance of calcium homeostasis. MA toxicity was critically dependent on calcium levels in culture medium and blocked by the extra- and intracellular calcium chelators EGTA and BAPTA-AM respectively. Moreover, MA-induced cell death was associated with activation of calcium-dependent calpain proteases. In summary, our study shows a comprehensive pathomechanistic concept for MA-induced dysfunction and damage of human proximal tubule cells.


Subject(s)
Calcium/metabolism , Energy Metabolism/drug effects , Homeostasis/drug effects , Maleates/pharmacology , Methylmalonic Acid/pharmacology , Calcium/physiology , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Kidney Failure, Chronic/chemically induced , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/drug effects , L-Lactate Dehydrogenase/metabolism , Oxygen Consumption/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...