Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202403333, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787684

ABSTRACT

Numerous studies have shown a fact that phase transformation and/or reconstruction are likely to occur and play crucial roles in electrochemical scenarios. Nevertheless, a decisive factor (such as facet, phase etc.) behind the diverse photoelectrochemical activity and selectivity of various copper/silicon photoelectrodes is still largely debated and missing in the community, especially for possibly dynamic behaviors of metal catalyst/semiconductor interface. Herein, through in situ X-ray absorption spectroscopy and transmission electron microscope, a model system of Cu nanocrystals with well-defined facets on black p-type silicon (BSi) is demonstrated to unprecedentedly reveal the dynamic phase transformation of forming irreversible silicide at Cu nanocrystal-BSi interface, which is validated to originate from the atomic interdiffusion between Cu and Si driven by light-induced dynamic activation process. The presence of in situ formed silicide can significantly enhance photovoltage and deliver a record-high onset potential above -0.4 V versus reversible reference electrode (RHE) for photoelectrochemical CH4 production. Significantly, the adaptive junction at Cu/Si interface is activated by an expansion of interatomic Cu-Cu distance, which efficiently restricts the C-C coupling pathway but strengthens the bonding with key intermediate of *CHO for CH4 yield, resulting in a remarkable 16-fold improvement in the product ratio of CH4/C2 products.

2.
Chemosphere ; 358: 142237, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705406

ABSTRACT

In this study, a novel Ce2MgMoO6/CNFs (cerium magnesium molybdite double perovskite decorated on carbon nanofibers) nanocomposite was developed for selective and ultra-sensitive detection of ciprofloxacin (CFX). Physical characterization and analytical techniques were used to explore the morphology, structure, and electrocatalytic characteristics of the Ce2MgMoO6/CNFs nanocomposite. The sensor has a wide linear range (0.005-7.71 µM and 9.75-77.71 µM), a low limit of detection (0.012 µM), high sensitivity (0.807 µA µM-1 cm-2 nM), remarkable repeatability, and an appreciable storage stability. Here, we used density functional theory to investigate CFX and oxidized CFX as well as the locations of the energy levels and electron transfer sites. Furthermore, the Ce2MgMoO6/CNFs-modified electrode was successfully tested in food samples (milk and honey), indicating an acceptable response with a recovery percentage and relative standard deviation of less than 4%, which is comparable to that of GC-MS. Finally, the developed sensor exhibited high selectivity and stability for CFX detection.


Subject(s)
Carbon , Ciprofloxacin , Honey , Milk , Nanocomposites , Nanofibers , Oxides , Nanocomposites/chemistry , Ciprofloxacin/analysis , Ciprofloxacin/chemistry , Oxides/chemistry , Milk/chemistry , Nanofibers/chemistry , Animals , Honey/analysis , Carbon/chemistry , Molybdenum/chemistry , Limit of Detection , Calcium Compounds/chemistry , Titanium/chemistry , Density Functional Theory , Electrochemical Techniques/methods , Cerium/chemistry , Food Contamination/analysis , Electrodes , Magnesium/chemistry , Magnesium/analysis
3.
Adv Mater ; : e2400640, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621196

ABSTRACT

Nowadays, high-valent Cu species (i.e., Cuδ +) are clarified to enhance multi-carbon production in electrochemical CO2 reduction reaction (CO2RR). Nonetheless, the inconsistent average Cu valence states are reported to significantly govern the product profile of CO2RR, which may lead to misunderstanding of the enhanced mechanism for multi-carbon production and results in ambiguous roles of high-valent Cu species. Dynamic Cuδ + during CO2RR leads to erratic valence states and challenges of high-valent species determination. Herein, an alternative descriptor of (sub)surface oxygen, the (sub)surface-oxygenated degree (κ), is proposed to quantify the active high-valent Cu species on the (sub)surface, which regulates the multi-carbon production of CO2RR. The κ validates a strong correlation to the carbonyl (*CO) coupling efficiency and is the critical factor for the multi-carbon enhancement, in which an optimized Cu2O@Pd2.31 achieves the multi-carbon partial current density of ≈330 mA cm-2 with a faradaic efficiency of 83.5%. This work shows a promising way to unveil the role of high-valent species and further achieve carbon neutralization.

4.
Colloids Surf B Biointerfaces ; 234: 113755, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38241894

ABSTRACT

In terms of cancer-related deaths among women, breast cancer (BC) is the most common. Clinically, human epidermal growth receptor 2 (HER2) is one of the most commonly used diagnostic biomarkers for facilitating BC cell proliferation and malignant growth. In this study, a disposable gold electrode (DGE) modified with gold nanoparticle-decorated Ti3C2Tx (Au/MXene) was utilized as a sensing platform to immobilize the capturing antibody (Ab1/Au/MXene). Subsequently, nitrogen-doped graphene (NG) with a metal-organic framework (MOF)-derived copper-manganese-cobalt oxide, tagged as NG/CuMnCoOx, was used as a probe to label the detection antibody (Ab2). A sandwich-type immunosensor (NG/CuMnCoOx/Ab2/HER2-ECD /Ab1/Au/MXene/DGE) was developed to quantify HER2-ECD. NG/CuMnCoOx enhances the conductivity, electrocatalytic active sites, and surface area to immobilize Ab2. In addition, Au/MXene facilitates electron transport and captures more Ab1 on its surface. Under optimal conditions, the resultant immunosensor displayed an excellent linear range of 0.0001 to 50.0 ng. mL-1. The detection limit was 0.757 pg·mL-1 with excellent selectivity, appreciable reproducibility, and high stability. Moreover, the applicability for determining HER2-ECD in human serum samples indicates its ability to monitor tumor markers clinically.


Subject(s)
Biosensing Techniques , Breast Neoplasms , Graphite , Manganese Compounds , Metal Nanoparticles , Metal-Organic Frameworks , Nitrites , Oxides , Transition Elements , Humans , Female , Biomarkers, Tumor , Graphite/chemistry , Metal-Organic Frameworks/chemistry , Gold/chemistry , Reproducibility of Results , Metal Nanoparticles/chemistry , Breast Neoplasms/diagnosis , Immunoassay , Electrochemical Techniques , Limit of Detection , Antibodies, Immobilized/chemistry
5.
Biomater Adv ; 157: 213724, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38134729

ABSTRACT

Traditional cancer treatments are ineffective and cause severe adverse effects. Thus, the development of chemodynamic therapy (CDT) has the potential for in situ catalysis of endogenous molecules into highly toxic species, which would then effectively destroy cancer cells. However, the shortage of high-performance nanomaterials hinders the broad clinical application of this approach. In present study, an effective therapeutic platform was developed using a simple hydrothermal method for the in-situ activation of the Fenton reaction within the tumor microenvironment (TME) to generate substantial quantities of •OH and ultimately destroy cancer cells, which could be further synergistically increased by photothermal therapy (PHT) and magnetic hyperthermia (MHT) aided by FeMoO4 nanorods (NRs). The produced FeMoO4 NRs were used as MHT/PHT and Fenton catalysts. The photothermal conversion efficiency of the FeMoO4 NRs was 31.75 %. In vitro and \ experiments demonstrated that the synergistic combination of MHT/PHT/CDT notably improved anticancer efficacy. This work reveals the significant efficacy of CDT aided by both photothermal and magnetic hyperthermia and offers a feasible strategy for the use of iron-based nanoparticles in the field of biomedical applications.


Subject(s)
Hyperthermia, Induced , Nanostructures , Phototherapy , Tumor Microenvironment , Magnetic Phenomena
6.
Small ; 19(34): e2301711, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37093181

ABSTRACT

Solar-driven CO2 conversion into valuable fuels is a promising strategy to alleviate the energy and environmental issues. However, inefficient charge separation and transfer greatly limits the photocatalytic CO2 reduction efficiency. Herein, single-atom Pt anchored on 3D hierarchical TiO2 -Ti3 C2 with atomic-scale interface engineering is successfully synthesized through an in situ transformation and photoreduction method. The in situ growth of TiO2 on Ti3 C2 nanosheets can not only provide interfacial driving force for the charge transport, but also create an atomic-level charge transfer channel for directional electron migration. Moreover, the single-atom Pt anchored on TiO2 or Ti3 C2 can effectively capture the photogenerated electrons through the atomic interfacial PtO bond with shortened charge migration distance, and simultaneously serve as active sites for CO2 adsorption and activation. Benefiting from the synergistic effect of the atomic interface engineering of single-atom Pt and interfacial TiOTi, the optimized photocatalyst exhibits excellent CO2 -to-CO conversion activity of 20.5 µmol g-1  h-1 with a selectivity of 96%, which is five times that of commercial TiO2 (P25). This work sheds new light on designing ideal atomic-scale interface and single-atom catalysts for efficient solar fuel conversation.

7.
Angew Chem Int Ed Engl ; 61(48): e202211142, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36173929

ABSTRACT

The hetero-atomic interaction has been the subject of many investigations, due to their heterogeneity, the individual roles of the atoms are still difficult to realize. Herein, an electrocatalyst with a hetero-atomic pair confined on a tungsten phosphide (WP) substrate so that the Fe3+ -site of the pair is distal to the surface is shown to deliver an extremely low overpotential of 192 mV at 10 mA cm-2 and one of the highest oxygen production turnover frequencies (TOF) of 2.1 s-1 at 300 mV under alkaline environment for the oxygen evolution reaction (OER). Operando characterization shows the Lewis acidic Fe3+ site boosts a large population of Co4+/3+ and the deprotonation of coordinated water, allowing simultaneously enhanced electron-transfer as well as the proton-transfer. A significant contribution from the WP substrate modulates the order of hydroxide transfer in the pre-equilibrium step (PES) and rate-determining-step (RDS), leading to a remarkable OER performance.

8.
Nanoscale ; 14(25): 8944-8950, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35713505

ABSTRACT

Unravelling the dynamic characterization of electrocatalysts during the electrochemical CO2 reduction reaction (CO2RR) is a critical factor to improve the production efficiency and selectivity, since most pre-electrocatalysts undergo structural reconstruction and surface rearrangement under working conditions. Herein, a series of pre-electrocatalysts including CuO, ZnO and two different ratios of CuO/ZnO were systematically designed by a sputtering process to clarify the correlation of the dynamic characterization of Cu sites in the presence of Zn/ZnO and the product profile. The evidence provided by in situ X-ray absorption spectroscopy (XAS) indicated that appropriate Zn/ZnO levels could induce a variation in the coordination number of Cu sites via reversing Ostwald ripening. Specifically, the recrystallized Cu site with a lower coordination number exhibited a preferential production of methane (CH4). More importantly, our findings provide a promising approach for the efficient production of CH4 by in situ reconstructing Cu-based binary electrocatalysts.

9.
J Am Chem Soc ; 144(3): 1174-1186, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-34935380

ABSTRACT

Real bifunctional electrocatalysts for hydrogen evolution reaction and oxygen evolution reaction have to be the ones that exhibit a steady configuration during/after reaction without irreversible structural transformation or surface reconstruction. Otherwise, they can be termed as "precatalysts" rather than real catalysts. Herein, through a strongly atomic metal-support interaction, single-atom dispersed catalysts decorating atomically dispersed Ru onto a nickel-vanadium layered double hydroxide (LDH) scaffold can exhibit excellent HER and OER activities. Both in situ X-ray absorption spectroscopy and operando Raman spectroscopic investigation clarify that the presence of atomic Ru on the surface of nickel-vanadium LDH is playing an imperative role in stabilizing the dangling bond-rich surface and further leads to a reconstruction-free surface. Through strong metal-support interaction provided by nickel-vanadium LDH, the significant interplay can stabilize the reactive atomic Ru site to reach a small fluctuation in oxidation state toward cathodic HER without reconstruction, while the atomic Ru site can stabilize the Ni site to have a greater structural tolerance toward both the bond constriction and structural distortion caused by oxidizing the Ni site during anodic OER and boost the oxidation state increase in the Ni site that contributes to its superior OER performance. Unlike numerous bifunctional catalysts that have suffered from the structural reconstruction/transformation for adapting the HER/OER cycles, the proposed Ru/Ni3V-LDH is characteristic of steady dual reactive sites with the presence of a strong metal-support interaction (i.e., Ru and Ni sites) for individual catalysis in water splitting and is revealed to be termed as a real bifunctional electrocatalyst.

10.
Adv Mater ; 33(18): e2008599, 2021 May.
Article in English | MEDLINE | ID: mdl-33792090

ABSTRACT

The electronic metal-support interaction (EMSI) plays a crucial role in catalysis as it can induce electron transfer between metal and support, modulate the electronic state of the supported metal, and optimize the reduction of intermediate species. In this work, the tailoring of electronic structure of Pt single atoms supported on N-doped mesoporous hollow carbon spheres (Pt1 /NMHCS) via strong EMSI engineering is reported. The Pt1 /NMHCS composite is much more active and stable than the nanoparticle (PtNP ) counterpart and commercial 20 wt% Pt/C for catalyzing the electrocatalytic hydrogen evolution reaction (HER), exhibiting a low overpotential of 40 mV at a current density of 10 mA cm-2 , a high mass activity of 2.07 A mg-1 Pt at 50 mV overpotential, a large turnover frequency of 20.18 s-1 at 300 mV overpotential, and outstanding durability in acidic electrolyte. Detailed spectroscopic characterizations and theoretical simulations reveal that the strong EMSI effect in a unique N1 -Pt1 -C2 coordination structure significantly tailors the electronic structure of Pt 5d states, resulting in promoted reduction of adsorbed proton, facilitated H-H coupling, and thus Pt-like HER activity. This work provides a constructive route for precisely designing single-Pt-atom-based robust electrocatalysts with high HER activity and durability.

11.
Inorg Chem ; 60(10): 6930-6938, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33792308

ABSTRACT

Heterogeneous catalysis based on air-stable lanthanide complexes is relatively rare, especially for electrochemical water oxidation and reduction. Therefore, it is highly desired to investigate the synergy caused by cocatalysts on the lanthanide complex family for heterogeneous catalysis because of their structural diversity, air/moisture insensitivity, and easy preparation under an air atmosphere. Two mononuclear and three dinuclear dysprosium complexes containing a series of Schiff-base ligands have been demonstrated as robust electrocatalysts for triggering heterogeneous water oxidation in alkaline solution, in which the complex [Dy2(hmb)2(OAc)4]·MeCN(3) was revealed to have the best activity toward heterogeneous water oxidation among all five complexes in the present study. The molecular activation of dysprosium complexes has also been investigated with a series of N-containing heterocyclic additives [i.e., 4-(dimethylamino)pyridine (DMAP), bis(triphenylphosphine)iminium chloride ([PPN]Cl), indole, and quinoline]. In particular, the corresponding overpotential was effectively enhanced by 211 mV (at a current density of 10 mA cm-2) with the assistance of DMAP. On the basis of electrochemical and ex situ/in situ spectroscopic investigations, the best catalyst, DMAP-complex 3 on a carbon paper electrode, was confirmed with well-maintained molecular identity during heterogeneous water oxidation free of forming any dysprosium oxide and/or undesired products.

12.
Nanoscale ; 12(35): 18013-18021, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32856664

ABSTRACT

Unraveling the reaction mechanism behind the CO2 reduction reaction (CO2RR) is a crucial step for advancing the development of efficient and selective electrocatalysts to yield valuable chemicals. To understand the mechanism of zinc electrocatalysts toward the CO2RR, a series of thermally oxidized zinc foils is prepared to achieve a direct correlation between the chemical state of the electrocatalyst and product selectivity. The evidence provided by in situ Raman spectroscopy, X-ray absorption spectroscopy (XAS) and X-ray diffraction significantly demonstrates that the Zn(ii) and Zn(0) species on the surface are responsible for the production of carbon monoxide (CO) and formate, respectively. Specifically, the destruction of a dense oxide layer on the surface of zinc foil through a thermal oxidation process results in a 4-fold improvement of faradaic efficiency (FE) of formate toward the CO2RR. The results from in situ measurements reveal that the chemical state of zinc electrocatalysts could dominate the product profile for the CO2RR, which provides a promising approach for tuning the product selectivity of zinc electrocatalysts.

13.
ACS Nano ; 14(7): 8584-8593, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32603083

ABSTRACT

Polymeric carbon nitride (CN) is one of the most promising metal-free photocatalysts to alleviate the energy crisis and environmental pollution. Loading cocatalysts is regarded as an effective way to improve the photocatalytic efficiency of CNs. However, commonly used noble metal cocatalysts limit their applications due to their rarity and high cost. Herein, we present the effective synthesis of single-atom copper-modified CN via supramolecular preorganization with subsequent condensation, which provides effective charge transfer pathways by an "infused" delocalized state with variable-valence catalysis at the same time. The C-Cu-N2 single-atom catalytic site can activate CO2 molecules and reduces the energy barrier toward photocatalytic CO2 reduction. Excellent performance for photocatalytic CO2 reduction was found. This work thereby provides a general protocol of designing a noble-metal-free photocatalyst with infused metal centers toward a wide range of applications.


Subject(s)
Carbon Dioxide , Photosynthesis , Catalysis , Copper , Polymers
14.
Phys Chem Chem Phys ; 19(13): 8681-8693, 2017 Mar 29.
Article in English | MEDLINE | ID: mdl-28272620

ABSTRACT

Metal oxides of the spinel family have shown great potential towards the oxygen evolution reaction (OER), but the fundamental OER mechanism of spinel oxides is still far from being completely understood, especially for the role of the metal ions. Owing to various coordinated sites of divalent/trivalent metals ions and surface conditions (morphology and defects), it is a great challenge to have a fair assessment of the electrocatalytic performance of spinel systems. Herein, we demonstrated a series of MFe2O4 (M = Fe, Co, Ni, Zn) with a well-controlled morphology to achieve a comprehensive study of electrocatalytic activity toward OER. By utilizing several in situ analyses, we could conclude a universal rule that the activities for OER in the metal oxide systems were determined by the occurrence of a phase transformation, and this structural transformation could work well in both crystallographic sites (Td and Oh sites). Additionally, the divalent metal ion significantly dominated the formation of oxyhydroxide through an epitaxial relationship, which depended on the atomic arrangement at the interface of spinel and metal oxyhydroxide, while trivalent metal ions remained unchanged as a host lattice. The metal oxyhydroxide was formed during a redox reaction rather than being formed during OER. The occurrence of the redox reaction seems to accompany a remarkable increase in resistance and capacitance might result from the structural transformation from spinel to metal oxyhydroxide. We believe that the approaching strategies and information obtained in the present study can offer a guide to designing a promising electrocatalytic system towards the oxygen evolution reaction and other fields.

15.
Chem Commun (Camb) ; 52(8): 1567-70, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26741953

ABSTRACT

A well-defined co-catalyst system TiO2 nanotube-Au (core)-Pt (shell) was demonstrated to be the combination of the localized surface plasmon effect of gold and excellent proton reduction nature of platinum. Furthermore, surface engineering by the descending Fermi energies of gold and platinum was beneficial to electron transfer.


Subject(s)
Gold/chemistry , Nanostructures , Platinum/chemistry , Catalysis , Hydrogen/chemistry , Photochemical Processes , Titanium/chemistry
16.
Nat Commun ; 6: 8106, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26315066

ABSTRACT

Electrochemically converting water into oxygen/hydrogen gas is ideal for high-density renewable energy storage in which robust electrocatalysts for efficient oxygen evolution play crucial roles. To date, however, electrocatalysts with long-term stability have remained elusive. Here we report that single-crystal Co3O4 nanocube underlay with a thin CoO layer results in a high-performance and high-stability electrocatalyst in oxygen evolution reaction. An in situ X-ray diffraction method is developed to observe a strong correlation between the initialization of the oxygen evolution and the formation of active metal oxyhydroxide phase. The lattice of skin layer adapts to the structure of the active phase, which enables a reversible facile structural change that facilitates the chemical reactions without breaking the scaffold of the electrocatalysts. The single-crystal nanocube electrode exhibits stable, continuous oxygen evolution for >1,000 h. This robust stability is attributed to the complementary nature of defect-free single-crystal electrocatalyst and the reversible adapting layer.

SELECTION OF CITATIONS
SEARCH DETAIL
...