Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1353138, 2024.
Article in English | MEDLINE | ID: mdl-38529289

ABSTRACT

Introduction: BAP1 is a deubiquitinase (DUB) of the Ubiquitin C-terminal Hydrolase (UCH) family that regulates gene expression and other cellular processes, through its direct catalytic activity on the repressive epigenetic mark histone H2AK119ub, as well as on several other substrates. BAP1 is also a highly important tumor suppressor, expressed and functional across many cell types and tissues. In recent work, we demonstrated a cell intrinsic role of BAP1 in the B cell lineage development in murine bone marrow, however the role of BAP1 in the regulation of B cell mediated humoral immune response has not been previously explored. Methods and results: In the current study, we demonstrate that a B-cell intrinsic loss of BAP1 in activated B cells in the Bap1 fl/fl Cγ1-cre murine model results in a severe defect in antibody production, with altered dynamics of germinal centre B cell, memory B cell, and plasma cell numbers. At the cellular and molecular level, BAP1 was dispensable for B cell immunoglobulin class switching but resulted in an impaired proliferation of activated B cells, with genome-wide dysregulation in histone H2AK119ub levels and gene expression. Conclusion and discussion: In summary, our study establishes the B-cell intrinsic role of BAP1 in antibody mediated immune response and indicates its central role in the regulation of the genome-wide landscapes of histone H2AK119ub and downstream transcriptional programs of B cell activation and humoral immunity.


Subject(s)
B-Lymphocytes , Tumor Suppressor Proteins , Ubiquitin Thiolesterase , Animals , Mice , Antibodies/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Histones/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism
2.
Immunology ; 172(1): 109-126, 2024 May.
Article in English | MEDLINE | ID: mdl-38316548

ABSTRACT

Dendritic cells (DCs) are the most significant antigen presenting cells of the immune system, critical for the activation of naïve T cells. The pathways controlling DC development, maturation, and effector function therefore require precise regulation to allow for an effective induction of adaptive immune response. MYSM1 is a chromatin binding deubiquitinase (DUB) and an activator of gene expression via its catalytic activity for monoubiquitinated histone H2A (H2A-K119ub), which is a highly abundant repressive epigenetic mark. MYSM1 is an important regulator of haematopoiesis in mouse and human, and a systemic constitutive loss of Mysm1 in mice results in a depletion of many haematopoietic progenitors, including DC precursors, with the downstream loss of most DC lineage cells. However, the roles of MYSM1 at the later checkpoints in DC development, maturation, activation, and effector function at present remain unknown. In the current work, using a range of novel mouse models (Mysm1flCreERT2, Mysm1flCD11c-cre, Mysm1DN), we further the understanding of MYSM1 functions in the DC lineage: assessing the requirement for MYSM1 in DC development independently of other complex developmental phenotypes, exploring its role at the later checkpoints in DC maintenance and activation in response to microbial stimulation, and testing the requirement for the DUB catalytic activity of MYSM1 in these processes. Surprisingly, we demonstrate that MYSM1 expression and catalytic activity in DCs are dispensable for the maintenance of DC numbers in vivo or for DC activation in response to microbial stimulation. In contrast, MYSM1 acts via its DUB catalytic activity specifically in haematopoietic progenitors to allow normal DC lineage development, and its loss results not only in a severe DC depletion but also in the production of functionally altered DCs, with a dysregulation of many housekeeping transcriptional programs and significantly altered responses to microbial stimulation.


Subject(s)
Trans-Activators , Ubiquitin-Specific Proteases , Animals , Humans , Mice , Cell Differentiation , Chromatin/genetics , Dendritic Cells/metabolism , Endopeptidases/genetics , Endopeptidases/metabolism , Histones/metabolism , Mice, Knockout , Trans-Activators/genetics , Trans-Activators/metabolism , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism
3.
Immunology ; 170(4): 553-566, 2023 12.
Article in English | MEDLINE | ID: mdl-37688495

ABSTRACT

Rheumatoid arthritis is a chronic and systemic inflammatory disease that affects approximately 1% of the world's population and is characterised by joint inflammation, the destruction of articular cartilage and bone, and many potentially life-threatening extraarticular manifestations. B lymphocytes play a central role in the pathology of rheumatoid arthritis as the precursors of autoantibody secreting plasma cells, as highly potent antigen-presenting cells, and as a source of various inflammatory cytokines, however, the effects of rheumatoid arthritis on B lymphocyte development remain poorly understood. Here, we analyse B lymphocyte development in murine models of rheumatoid arthritis, quantifying all the subsets of B cell precursors in the bone marrow and splenic B cells using flow cytometry. We demonstrate a severe reduction in pre-B cells and immature B cells in the bone marrow of mice with active disease, despite no major effects on the mature naïve B cell numbers. The loss of B cell precursors in the bone marrow of the affected mice was associated with a highly significant reduction in the proportion of Ki67+ cells, indicating impaired cell proliferation, while the viability of the B cell precursors was not significantly affected. We also observed some mobilisation of the B cell precursor cells into the mouse spleen, demonstrated with flow cytometry and pre-B colony forming units assays. In summary, the current work demonstrates a severe dysregulation in B lymphocyte development in murine rheumatoid arthritis, with possible implications for B cell repertoire formation, tolerance induction, and disease mechanisms.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Mice , Animals , Disease Models, Animal , B-Lymphocytes , Immune Tolerance
4.
Sci Rep ; 13(1): 338, 2023 01 07.
Article in English | MEDLINE | ID: mdl-36611064

ABSTRACT

Myb-like SWIRM and MPN domains 1 (MYSM1) is a chromatin binding protein with deubiquitinase (DUB) catalytic activity. Rare MYSM1 mutations in human patients result in an inherited bone marrow failure syndrome, highlighting the biomedical significance of MYSM1 in the hematopoietic system. We and others characterized Mysm1-knockout mice as a model of this disorder and established that MYSM1 regulates hematopoietic function and leukocyte development in such models through different mechanisms. It is, however, unknown whether the DUB catalytic activity of MYSM1 is universally required for its many functions and for the maintenance of hematopoiesis in vivo. To test this, here we generated a new mouse strain carrying a Mysm1D660N point mutation (Mysm1DN) and demonstrated that the mutation renders MYSM1 protein catalytically inactive. We characterized Mysm1DN/DN and Mysm1fl/DN CreERT2 mice, against appropriate controls, for constitutive and inducible loss of MYSM1 catalytic function. We report a profound similarity in the developmental, hematopoietic, and immune phenotypes resulting from the loss of MYSM1 catalytic function and the full loss of MYSM1 protein. Overall, our work for the first time establishes the critical role of MYSM1 DUB catalytic activity in vivo in hematopoiesis, leukocyte development, and other aspects of mammalian physiology.


Subject(s)
Endopeptidases , Ubiquitin-Specific Proteases , Humans , Mice , Animals , Endopeptidases/metabolism , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism , Cell Differentiation , Hematopoiesis/genetics , Mutation , Hematopoietic Stem Cells/metabolism , Mice, Knockout , Mammals/metabolism , Trans-Activators/metabolism
5.
Front Immunol ; 12: 694152, 2021.
Article in English | MEDLINE | ID: mdl-34858388

ABSTRACT

(1→3)-ß-D-Glucan (BDG) represents a potent pathogen-associated molecular pattern (PAMP) in triggering the host response to fungal and some bacterial infections. Monocytes play a key role in recognizing BDG and governing the acute host response to infections. However, the mechanisms regulating monocyte's acute response to BDG are poorly understood. We sought to investigate the response of monocytes to BDG at the epigenetic, transcriptomic, and molecular levels. Response of human monocytes to 1, 4, and 24 hours of BDG exposure was investigated using RNA-seq, ATAC-seq, H3K27ac and H3K4me1 ChIP-seq. We show that pathways including glutathione metabolism, pentose phosphate pathway, and citric acid cycle were upregulated at the epigenetic and transcriptomic levels in response to BDG exposure. Strikingly, unlike bacterial lipopolysaccharides, BDG induced intracellular glutathione synthesis. BDG exposure also induced NADP synthesis, increased NADPH/NADP ratio, and increased expression of genes involved in the pentose phosphate pathway in a GSH-dependent manner. By inhibiting GSH synthesis with L-buthionine sulfoximine (BSO) before BDG exposure we show that the GSH pathway promotes cell survival and regulates monocyte's effector functions including NO production, phagocytosis, and cytokine production. In summary, our work demonstrates that BDG induces glutathione synthesis and metabolism in monocytes, which is a major promoter of the acute functional response of monocytes to infections.


Subject(s)
Glutathione/metabolism , Monocytes/immunology , Pathogen-Associated Molecular Pattern Molecules/immunology , Proteoglycans/immunology , Buthionine Sulfoximine/pharmacology , Cell Survival , Cells, Cultured , Citric Acid/metabolism , Epigenesis, Genetic , Gene Expression Profiling , Humans , Immunity, Innate , Nitric Oxide/metabolism , Pentose Phosphate Pathway , Phagocytosis , Sequence Analysis, RNA
6.
Cell Death Dis ; 12(10): 923, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34625535

ABSTRACT

Stem and progenitor cells are the main mediators of tissue renewal and repair, both under homeostatic conditions and in response to physiological stress and injury. Hematopoietic system is responsible for the regeneration of blood and immune cells and is maintained by bone marrow-resident hematopoietic stem and progenitor cells (HSPCs). Hematopoietic system is particularly susceptible to injury in response to genotoxic stress, resulting in the risk of bone marrow failure and secondary malignancies in cancer patients undergoing radiotherapy. Here we analyze the in vivo transcriptional response of HSPCs to genotoxic stress in a mouse whole-body irradiation model and, together with p53 ChIP-Seq and studies in p53-knockout (p53KO) mice, characterize the p53-dependent and p53-independent branches of this transcriptional response. Our work demonstrates the p53-independent induction of inflammatory transcriptional signatures in HSPCs in response to genotoxic stress and identifies multiple novel p53-target genes induced in HSPCs in response to whole-body irradiation. In particular, we establish the direct p53-mediated induction of P2X7 expression on HSCs and HSPCs in response to genotoxic stress. We further demonstrate the role of P2X7 in hematopoietic response to acute genotoxic stress, with P2X7 deficiency significantly extending mouse survival in irradiation-induced hematopoietic failure. We also demonstrate the role of P2X7 in the context of long-term HSC regenerative fitness following sublethal irradiation. Overall our studies provide important insights into the mechanisms of HSC response to genotoxic stress and further suggest P2X7 as a target for pharmacological modulation of HSC fitness and hematopoietic response to genotoxic injury.


Subject(s)
DNA Damage , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Receptors, Purinergic P2X7/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Binding Sites , Cell Line , Chromosome Mapping , DNA/metabolism , Gene Expression Regulation , Hematopoiesis/genetics , Homeostasis , Mice, Inbred C57BL , Mice, Knockout , Protein Binding , Transcription, Genetic , Whole-Body Irradiation
7.
J Cell Mol Med ; 25(14): 7089-7094, 2021 07.
Article in English | MEDLINE | ID: mdl-34114734

ABSTRACT

MYSM1 is a chromatin-binding protein, widely investigated for its functions in haematopoiesis in human and mouse; however, its role in haematologic malignancies remains unexplored. Here, we investigate the cross-talk between MYSM1 and oncogenic cMYC in the transcriptional regulation of genes encoding ribosomal proteins, and the implications of these mechanisms for cMYC-driven carcinogenesis. We demonstrate that in cMYC-driven B cell lymphoma in mouse models, MYSM1-loss represses ribosomal protein gene expression and protein synthesis. Importantly, the loss of MYSM1 also strongly inhibits cMYC oncogenic activity and protects against B cell lymphoma onset and progression in the mouse models. This advances the understanding of the molecular and transcriptional mechanisms of lymphomagenesis, and suggests MYSM1 as a possible drug target for cMYC-driven malignancies.


Subject(s)
Lymphoma, B-Cell/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Trans-Activators/deficiency , Ubiquitin-Specific Proteases/deficiency , Animals , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Lymphoma, B-Cell/genetics , Mice , Proto-Oncogene Proteins c-myc/genetics , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism
8.
Front Immunol ; 12: 626418, 2021.
Article in English | MEDLINE | ID: mdl-33912157

ABSTRACT

BAP1 is a deubiquitinase (DUB) of the Ubiquitin C-terminal Hydrolase (UCH) family that regulates gene expression and other cellular processes, via deubiquitination of histone H2AK119ub and other substrates. BAP1 is an important tumor suppressor in human, expressed and functional across many cell-types and tissues, including those of the immune system. B lymphocytes are the mediators of humoral immune response, however the role of BAP1 in B cell development and physiology remains poorly understood. Here we characterize a mouse line with a selective deletion of BAP1 within the B cell lineage (Bap1fl/fl mb1-Cre) and establish a cell intrinsic role of BAP1 in the regulation of B cell development. We demonstrate a depletion of large pre-B cells, transitional B cells, and mature B cells in Bap1fl/fl mb1-Cre mice. We characterize broad transcriptional changes in BAP1-deficient pre-B cells, map BAP1 binding across the genome, and analyze the effects of BAP1-loss on histone H2AK119ub levels and distribution. Overall, our work establishes a cell intrinsic role of BAP1 in B lymphocyte development, and suggests its contribution to the regulation of the transcriptional programs of cell cycle progression, via the deubiquitination of histone H2AK119ub.


Subject(s)
B-Lymphocytes/enzymology , Histones/metabolism , Protein Processing, Post-Translational , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Animals , B-Lymphocytes/immunology , Cell Lineage , Cell Proliferation , Cells, Cultured , Epigenesis, Genetic , Female , Gene Expression Regulation, Developmental , Lymphocyte Activation , Male , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Precursor Cells, B-Lymphoid/enzymology , Precursor Cells, B-Lymphoid/immunology , Transcription, Genetic , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...