Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
SLAS Technol ; 28(4): 223-229, 2023 08.
Article in English | MEDLINE | ID: mdl-36804177

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic kidney disease and is characterized by the formation of renal cysts and the eventual development of end-stage kidney disease. One approach to treating ADPKD is through inhibition of the mammalian target of rapamycin (mTOR) pathway, which has been implicated in cell overproliferation, contributing to renal cyst expansion. However, mTOR inhibitors, including rapamycin, everolimus, and RapaLink-1, have off-target side effects including immunosuppression. Thus, we hypothesized that the encapsulation of mTOR inhibitors in drug delivery carriers that target the kidneys would provide a strategy that would enable therapeutic efficacy while minimizing off-target accumulation and associated toxicity. Toward eventual in vivo application, we synthesized cortical collecting duct (CCD) targeted peptide amphiphile micelle (PAM) nanoparticles and show high drug encapsulation efficiency (>92.6%). In vitro analysis indicated that drug encapsulation into PAMs enhanced the anti-proliferative effect of all three drugs in human CCD cells. Analysis of in vitro biomarkers of the mTOR pathway via western blotting confirmed that PAM encapsulation of mTOR inhibitors did not reduce their efficacy. These results indicate that PAM encapsulation is a promising way to deliver mTOR inhibitors to CCD cells and potentially treat ADPKD. Future studies will evaluate the therapeutic effect of PAM-drug formulations and ability to prevent off-target side effects associated with mTOR inhibitors in mouse models of ADPKD.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Mice , Animals , Humans , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Micelles , MTOR Inhibitors , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/pharmacology , TOR Serine-Threonine Kinases/therapeutic use , Kidney/metabolism , Sirolimus/pharmacology , Sirolimus/therapeutic use , Mammals/metabolism
2.
Bioact Mater ; 12: 203-213, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35310381

ABSTRACT

The clinical application of nanoparticles (NPs) to deliver RNA for therapy has progressed rapidly since the FDA approval of Onpattro® in 2018 for the treatment of polyneuropathy associated with hereditary transthyretin amyloidosis. The emergency use authorization or approval and widespread global use of two mRNA-NP based vaccines developed by Moderna Therapeutics Inc. and Pfizer-BioNTech in 2021 has highlighted the translatability of NP technology for RNA delivery. Furthermore, in clinical trials, a wide variety of NP formulations have been found to extend the half-life of RNA molecules such as microRNA, small interfering RNA, and messenger RNA, with limited safety issues. In this review, we discuss the NP formulations that are already used in the clinic to deliver therapeutic RNA and highlight examples of RNA-NPs which are currently under evaluation for human use. We also detail NP formulations that failed to progress through clinical trials, in hopes of guiding future successful translation of nanomedicine-based RNA therapeutics into the clinic.

3.
Cell Mol Bioeng ; 13(5): 475-486, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33184578

ABSTRACT

INTRODUCTION: Chronic kidney disease (CKD) affects approximately 13% of the world's population and will lead to dialysis or kidney transplantation. Unfortunately, clinically available drugs for CKD show limited efficacy and toxic extrarenal side effects. Hence, there is a need to develop targeted delivery systems with enhanced kidney specificity that can also be combined with a patient-compliant administration route for such patients that need extended treatment. Towards this goal, kidney-targeted nanoparticles administered through transdermal microneedles (KNP/MN) is explored in this study. METHODS: A KNP/MN patch was developed by incorporating folate-conjugated micelle nanoparticles into polyvinyl alcohol MN patches. Rhodamine B (RhB) was encapsulated into KNP as a model drug and evaluated for biocompatibility and binding with human renal epithelial cells. For MN, skin penetration efficiency was assessed using a Parafilm model, and penetration was imaged via scanning electron microscopy. In vivo, KNP/MN patches were applied on the backs of C57BL/6 wild type mice and biodistribution, organ morphology, and kidney function assessed. RESULTS: KNP showed high biocompatibility and folate-dependent binding in vitro, validating KNP's targeting to folate receptors in vitro. Upon transdermal administration in vivo, KNP/MN patches dissolved within 30 min. At varying time points up to 48 h post-KNP/MN administration, higher accumulation of KNP was found in kidneys compared with MN that consisted of the non-targeting, control-NP. Histological evaluation demonstrated no signs of tissue damage, and kidney function markers, serum blood urea nitrogen and urine creatinine, were found to be within normal ranges, indicating preservation of kidney health. CONCLUSIONS: Our studies show potential of KNP/MN patches as a non-invasive, self-administrable platform to direct therapies to the kidneys.

SELECTION OF CITATIONS
SEARCH DETAIL
...