Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Environ Pathol Toxicol Oncol ; 43(2): 77-90, 2024.
Article in English | MEDLINE | ID: mdl-38505914

ABSTRACT

Cancer has emerged as one of the most prevalent diseases worldwide, with a consistent rise in the number of cases observed over the past few decades. The rising mortality rates associated with cancer have transformed it into a significant global challenge. Despite the presence of various anti-cancer drugs, the complete eradication of cancer remains an elusive goal. The numerous undesirable effects associated with cancer therapy further emphasize the importance of developing an alternative technique of cancer treatment. Recent research has established the beneficial effects of a probiotic diet or supplementation against cancer without displaying any detrimental consequences. An alteration in the gut microbiome balance in humans can result in the development of various diseases, including cancer. Probiotics play a pivotal role in restoring the balance of gut flora, potentially contributing to cancer prevention. Furthermore, they have the capacity to curb the invasion and dissemination of infections that carry the risk of triggering cancer. Probiotics can combat cancer in various ways, such as by eliciting and boosting the immune response, secreting metabolites, preventing cancer cells from metastasizing, inhibiting carcinogenic chemicals, and mitigating their toxicity, etc. The present review intends to outline the significance of probiotics and their underlying mechanisms in combating various cancer types. Additionally, this review highlights the benefits of probiotic use in pre- and post-operative cancer patients.


Subject(s)
Gastrointestinal Microbiome , Neoplasms , Probiotics , Humans , Probiotics/therapeutic use , Diet , Neoplasms/prevention & control
2.
Int J Biol Macromol ; 260(Pt 1): 129324, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228210

ABSTRACT

In the rapidly evolving landscape of silver nanoparticles (Ag NPs) synthesis, the focus has predominantly been on plant-derived sources, leaving the realm of biological or animal origins relatively uncharted. Breaking new ground, our study introduces a pioneering approach: the creation of Ag NPs using marine fish collagen, termed ClAg NPs, and offers a comprehensive exploration of their diverse attributes. To begin, we meticulously characterized ClAg NPs, revealing their spherical morphology, strong crystalline structure, and average diameter of 5 to 100 nm. These NPs showed potent antibacterial activity, notably against S. aureus (gram-positive), surpassing their efficacy against S. typhi (gram-negative). Additionally, ClAg NPs effectively hindered the growth of MRSA biofilms at 500 µg/mL. Impressively, they demonstrated substantial antioxidant capabilities, out performing standard gallic acid. Although higher concentrations of ClAg NPs induced hemolysis (41.804 %), lower concentrations remained non hemolytic. Further evaluations delved into the safety and potential applications of ClAg NPs. In vitro cytotoxicity studies on HEK 293 and HeLa cells revealed dose-dependent toxicity, with IC50 of 75.28 µg/mL and 79.13 µg/mL, respectively. Furthermore, ClAg NPs affected seed germination, root, and shoot lengths in Mung plants, underscoring their relevance in agriculture. Lastly, zebrafish embryo toxicity assays revealed notable effects, particularly at 500 µg/mL, on embryo morphology and survival rates at 96 hpf. In conclusion, our study pioneers the synthesis and multifaceted evaluation of ClAg NPs, offering promise for their use as versatile nano therapeutics in the medical field and as high-value collagen-based nanobiomaterial with minimal environmental impact.


Subject(s)
Metal Nanoparticles , Silver , Animals , Humans , Silver/chemistry , Metal Nanoparticles/chemistry , Zebrafish , HeLa Cells , Staphylococcus aureus , HEK293 Cells , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
3.
Hum Cell ; 37(1): 54-84, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38038863

ABSTRACT

Type 2 Diabetes Mellitus (T2DM) accounts for more than 90% of total diabetes mellitus cases all over the world. Obesity and lack of balance between energy intake and energy expenditure are closely linked to T2DM. Initial pharmaceutical treatment and lifestyle interventions can at times lead to remission but usually help alleviate it to a certain extent and the condition remains, thus, recurrent with the patient being permanently pharmaco-dependent. Mesenchymal stromal cells (MSCs) are multipotent, self-renewing cells with the ability to secrete a variety of biological factors that can help restore and repair injured tissues. MSC-derived exosomes possess these properties of the original stem cells and are potentially able to confer superior effects due to advanced cell-to-cell signaling and the presence of stem cell-specific miRNAs. On the other hand, the repository of antidiabetic agents is constantly updated with novel T2DM disease-modifying drugs, with higher efficacy and increasingly convenient delivery protocols. Delving deeply, this review details the latest progress and ongoing studies related to the amalgamation of stem cells and antidiabetic drugs, establishing how this harmonized approach can exert superior effects in the management and potential reversal of T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Mesenchymal Stem Cells , MicroRNAs , Humans , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Multipotent Stem Cells
4.
Molecules ; 28(19)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37836640

ABSTRACT

Sugar carbonyl groups interact with protein amino groups, forming toxic components referred to as advanced glycation end products (AGEs). The glycation system (BSA, a model protein, and fructose) was incubated for five weeks at 37 °C in the presence and absence of Stevia leaf extract. The results indicated that the leaf extract (0.5 mg/mL) decreased the incidence of browning (70.84 ± 0.08%), fructosamine (67.27 ± 0.08%), and carbonyl content (64.04 ± 0.09%). Moreover, we observed an 81 ± 8.49% reduction in total AGEs. The inhibition of individual AGE (argpyrimidine, vesper lysine, and pentosidine) was ~80%. The decrease in the protein aggregation was observed with Congo red (46.88 ± 0.078%) and the Thioflavin T (31.25 ± 1.18%) methods in the presence of Stevia leaf extract. The repercussion of Stevia leaf extract on DNA glycation was examined using agarose gel electrophoresis, wherein the DNA damage was reversed in the presence of 1 mg/mL of leaf extract. When the HDF cell line was treated with 0.5 mg/mL of extract, the viability of cells decreased by only ~20% along with the same cytokine IL-10 production, and glucose uptake decreased by 28 ± 1.90% compared to the control. In conclusion, Stevia extract emerges as a promising natural agent for mitigating glycation-associated challenges, holding potential for novel therapeutic interventions and enhanced management of its related conditions.


Subject(s)
Stevia , Antiglycation Agents , Sugars , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Glycation End Products, Advanced , Plant Leaves
5.
Int J Biol Macromol ; 233: 123514, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36739049

ABSTRACT

Nano-based drug delivery research is increasing due to the therapeutic applications for human health care. However, traditional chemical capping-based synthesis methods lead to unwanted toxicity effects. Hence, there is an urgent need for green synthesis-based and biocompatible synthesis methods. The current work describes for the first time the green synthesis of Moringa gum-capped MgO nanoparticles (Mgm-MgO NPs). Their antioxidant activity, hemolysis potential, cytotoxicity, phytotoxicity, toxicity by chorioallantoic membrane (CAM) chick embryo assay and in vivo toxicity in zebrafish embryos were described. The Mgm-MgO NPs exhibited significant antioxidant activity. The Mgm-MgO NPs at 500 µg/ml produced significant hemolysis (72.54 %), while lower concentrations did not. Besides, the cytotoxicity assessment of the Mgm-MgO NPs was conducted in PA-1 cells from human ovarian teratocarcinoma by MTT assay. The Mgm-MgO NPs (0.1-500 µg/ml) considerably reduced the viability of PA-1 cells. Furthermore, Mgm-MgO NPs had no significant effect on seed germination but had a significant effect on root and shoot length of mungbean (Vigna radiata). Additionally, the CAM assay was used to analyze the antiangiogenic potential of Mgm-MgO NPs, exhibiting no significant alterations after 72 h. Finally, the zebrafish embryotoxicity assay revealed that the Mgm-MgO NPs (0.1-500 µg/ml) did not affect morphology, mortality or survival rate.


Subject(s)
Metal Nanoparticles , Moringa oleifera , Nanoparticles , Chick Embryo , Animals , Humans , Magnesium Oxide/pharmacology , Zebrafish , Antioxidants , Hemolysis
6.
J Food Biochem ; 46(12): e14391, 2022 12.
Article in English | MEDLINE | ID: mdl-36129194

ABSTRACT

The physicochemical characteristics, amino acid composition, and functional properties of Nigella sativa (NS) seedcake protein extracts were evaluated to establish their potential in nutraceuticals and functional foods. The highest yield (20.2%) of protein isolate (NSPI) from NS seedcake was achieved at an alkali concentration of 0.16 M, a buffer to sample ratio of 1/25 (w/v), extraction time, 15 min, and extraction temperature, 25°C. Amino acid analysis showed that the isolated protein is a good source of amino acids with a significant essential to total amino acid (E/TN) ratio. Further, the protein isolate exhibited maximum solubility at pH 11. The results of the physicochemical analysis clearly indicated that the protein isolate had good water and oil holding capacity, emulsification property, foaming capacity, and foaming stability. The secondary structure of NSPI contained α-helix, ß-sheet, and ß-turns. In addition, NSPI showed excellent antioxidant, anti-diabetic, and protein digestibility activities. From the experimental data, it could be concluded that NSPI could be an excellent source of proteins for the development of foods with promising functional properties. PRACTICAL APPLICATIONS: Nigella sativa seeds are frequently used as a natural food additive and have been a part of naturopathy for centuries due to their anti-inflammatory, antibacterial, anticancer, antidiabetic, immunomodulatory, and cardioprotective properties. Nigella sativa seedcakes obtained as by-products of the oil extraction process are rich in protein content and can be used as a sustainable source of dietary proteins to cater to a wide range of consumers. Being plant-based, they inherently possess several medicinal properties. Analyzing the physicochemical and functional properties of protein isolated from seedcakes allows us to optimize the protein extraction process while providing a better perspective on its potential in the nutraceuticals and food industries. It can be used as an energy supplement in animal feed as a source of protein to replace soybeans and barley. The antioxidant proteins when added to meat-based products have been known to protect the meat from oxidative stress as well as pathogenic organisms, thus, improving its shelf-life. Nigella sativa protein isolates have several applications in the pharmaceutical industry as well.


Subject(s)
Nigella sativa , Animals , Nigella sativa/chemistry , Plant Extracts/chemistry , Antioxidants , Food Additives , Amino Acids
7.
Dent Med Probl ; 59(3): 365-372, 2022.
Article in English | MEDLINE | ID: mdl-36166292

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has brought about radical changes in our habits and lifestyles. The suspension of schools has led children to spend long hours at home, with reduced socialization, and changes in dietary patterns, oral hygiene practices and sleep routines. During a pandemic, appropriate oral health management and disease prevention are very important for the child's oral and general health. OBJECTIVES: The aim of this study was to assess the attitudes and practices of parents with regard to their children's oral healthcare, dietary habits and dental care during the COVID-19 pandemic. MATERIAL AND METHODS: This cross-sectional study included 381 Indian parents of children aged 4-7 years. A self-instructed questionnaire was designed in English using the Google Forms platform. The questionnaire consisted of 4 parts: sociodemographic data; dietary habits of the child; oral hygiene measures; and dental information. The collected data was analyzed using descriptive and analytical statistics (the χ2 test). RESULTS: Among the children included in the study, 48% of those who experienced dental problems during the pandemic consumed more snacks and packaged foods between meals. Among the parents, 80% reported that their children used electronic devices at mealtimes, and 60% reported the food pouching habit in their children. A total of 71% of parents assisted their child at tooth brushing, while only 28% of the parents would take their child to the dental clinic for treatment. CONCLUSIONS: This study highlights the shortfalls in attitudes and practices among parents in relation to dietary habits, oral hygiene measures and the use of dental services during the COVID-19 pandemic regarding their children. This could be attributed to a lack of awareness, the fear of exposure and the inconveniences faced by parents.


Subject(s)
COVID-19 , Child , Cross-Sectional Studies , Health Knowledge, Attitudes, Practice , Humans , Pandemics , Parents
8.
Biomed Res Int ; 2022: 1958939, 2022.
Article in English | MEDLINE | ID: mdl-35924274

ABSTRACT

An anthraquinone textile dye, Reactive Blue 4 (RB4), poses environmental health hazards. In this study, remediation of RB4 (30-110 ppm) was carried out by hairy roots (HRs). UV-visible spectroscopy and FTIR analysis showed that the dye undergoes decolourization followed by degradation. In addition, toxicity and safety analyses of the bioremediated dye were performed on Allium cepa and zebrafish embryos, which revealed lesser toxicity of the bioremediated dye as compared to untreated dye. For Allium cepa, the highest concentration, i.e., 110 ppm of the treated dye, showed less chromosomal aberrations with a mitotic index of 8.5 ± 0.5, closer to control. Two-fold decrease in mortality of zebrafish embryos was observed at the highest treated dye concentration indicating toxicity mitigation. A higher level of lipid peroxidation (LPO) was recorded in the zebrafish embryo when exposed to untreated dye, suggesting a possible role of oxidative stress-inducing mortality of embryos. Further, the level of LPO was significantly normalized along with the other antioxidant enzymes in embryos after dye bioremediation. At lower concentrations, mitigated samples displayed similar antioxidant activity comparable to control underlining the fact that the dye at lesser concentration can be more easily degraded than the dye at higher concentration.


Subject(s)
Coloring Agents , Helianthus , Animals , Antioxidants/metabolism , Coloring Agents/metabolism , Helianthus/metabolism , Onions , Plant Roots/metabolism , Textiles , Triazines , Zebrafish/metabolism
9.
Environ Res ; 213: 113655, 2022 10.
Article in English | MEDLINE | ID: mdl-35716813

ABSTRACT

In the current scenario where more and more products containing nanomaterials are on the technological or pharmaceutical market, it is crucial to have a thorough knowledge of their toxicity before proposing possible applications. A proper analysis of the toxicity of the nanoproducts should include both in vitro and in vivo biological approaches and should consider that the synthesis and purification methods of nanomaterials may affect such toxicity. In the current work, the green synthesis of laminarin embedded ZnO nanoparticles (Lm-ZnO NPs) and their based chitosan capped ZnO nanocomposites (Ch-Lm-ZnO NCmps) is described for the first time. Furthermore, the evaluation of their in vitro cytotoxicity, phytotoxicity, and in vivo (Zebrafish embryo) toxicity was described. First, the green synthesized Lm-ZnO NPs and Ch-Lm-ZnO NCmps were fully physicochemically characterized. Lm-ZnO NPs were greatly agglomerated and had a spindle morphology ranging from 100 to 350 nm, while Ch-Lm-ZnO NCmps had irregular rod shape with flake-like structure clusters randomly aggregated with diverse sizes ranging from 20 to 250 nm. The in vitro cytotoxicity assessment of the green synthesized Lm-ZnO NPs and Ch-Lm-ZnO NCmps was carried out in normal human dermal fibroblasts (HDF) cells and human colon cancer (HT-29) cells by MTT assay. Lm-ZnO NPs and Ch-Lm-ZnO NCmps (0.1-500 µg/mL), significantly inhibited the viability of both cell lines, revealing dose-dependent cytotoxicity. Besides, the Lm-ZnO NPs and Ch-Lm-ZnO NCmps significantly affected seed germination and roots and shoots length of mung (Vigna radiata). Moreover, the zebrafish embryo toxicity of Lm-ZnO NPs and Ch-Lm-ZnO NCmps among the various concentrations used (0.1-500 µg/mL) caused deformities, increased mortality and decreased the survival rate of zebrafish embryo dose-dependently.


Subject(s)
Chitosan , Metal Nanoparticles , Nanoparticles , Zinc Oxide , Animals , Chitosan/chemistry , Chitosan/toxicity , Glucans , Humans , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Nanoparticles/chemistry , Zebrafish , Zinc Oxide/chemistry , Zinc Oxide/toxicity
10.
Mol Biol Rep ; 49(1): 687-703, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34669123

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus, a rapidly growing epidemic, and its frequently related complications demand global attention. The two factors commonly attributed to the epidemic are genetic factors and environmental factors. Studies indicate that the genetic makeup at an individual level and the environmental aspects influence the occurrence of the disease. However, there is insufficiency in understanding the mechanisms through which the gene mutations and environmental components individually lead to T2DM. Also, discrepancies have often been noted in the association of gene variants and type 2 diabetes when the gene factor is examined as a sole attribute to the disease. STUDY: In this review initially, we have focused on the proposed ways through which CAPN10, FABP2, GLUT2, TCF7L2, and ENPP1 variants lead to T2DM along with the inconsistencies observed in the gene-disease association. The article also emphasizes on obesity, lipoprotein profile, and nutrition as environmental factors and how they lead to T2DM. Finally, the main objective is explored, the environment-gene-disease association i.e. the influence of each environmental factor on the aforementioned specific gene-T2DM relationship to understand if the disease-causing capability of the gene variants is exacerbated by environmental influences. CONCLUSION: We found that environmental factors may influence the gene-disease relationship. Reciprocally, the genetic factors may alter the environment-disease relationship. To precisely conclude that the two factors act synergistically to lead to T2DM, more attention has to be paid to the combined influence of the genetic variants and environmental factors on T2DM occurrence instead of studying the influence of the factors separately.


Subject(s)
Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Diet/adverse effects , Gene Expression Regulation , Lipoproteins/blood , Nutrigenomics/methods , Obesity/epidemiology , Alleles , Animals , Comorbidity , Diabetes Mellitus, Type 2/blood , Genetic Predisposition to Disease , Humans , Mutation , Polymorphism, Single Nucleotide , Prevalence
11.
3 Biotech ; 10(12): 540, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33240743

ABSTRACT

In the present study, Carbon Quantum Dots (CQDs) were synthesized from Phoenix dactylifera (Date palm fruit) using microwave-assisted pyrolysis and were characterized for its various properties. The synthesized CQD sample exhibited a narrow absorbance peak at 270 nm in UV-Vis spectrum that indicated generation of narrow sized particles. The FTIR analysis of the crude CQDs and dialysed sample revealed the various functional groups involved in the formation of CQDs. TEM data revealed the nature of CQDs to be quasi-spherical and spatially distributed. Biocompatibility of the CQDs was studied using various model systems. CQDs displayed no cytotoxic and anti-clonogenic property when exposed to WRL-68 cell line whereas a slight toxicity was evident in HT1080 post 24 h of incubation suggesting the tremendous potential of the CQDs in the synergistic killing of cancer cells. Phytotoxicity assessment in four different seedlings revealed the non-toxic nature of CQDs. Further these CQDs were found to possess high biocompatibility imposing no inhibition in microbial growth and zilch effect on the development of zebrafish embryos. Thus these CQDs can find immense potential applications in fields of biomedicine as biomolecule detection, drug carriers, fluorescent tracers and in controlling the drug release.

SELECTION OF CITATIONS
SEARCH DETAIL
...