Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
2.
Cancer Immunol Immunother ; 73(1): 8, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231344

ABSTRACT

Bone marrow mesenchymal stromal cells (MSCs) have been described as potent regulators of T-cell function, though whether they could impede the effectiveness of immunotherapy against acute myeloid leukemia (AML) is still under investigation. We examine whether they could interfere with the activity of leukemia-specific clonal cytotoxic T-lymphocytes (CTLs) and chimeric antigen receptor (CAR) T cells, as well as whether the immunomodulatory properties of MSCs could be associated with the induction of T-cell senescence. Co-cultures of leukemia-associated Wilm's tumor protein 1 (WT1) and tyrosine-protein kinase transmembrane receptor 1 (ROR1)-reactive CTLs and of CD123-redirected switchable CAR T cells were prepared in the presence of MSCs and assessed for cytotoxic potential, cytokine secretion, and expansion. T-cell senescence within functional memory sub-compartments was investigated for the senescence-associated phenotype CD28-CD57+ using unmodified peripheral blood mononuclear cells. We describe inhibition of expansion of AML-redirected switchable CAR T cells by MSCs via indoleamine 2,3-dioxygenase 1 (IDO-1) activity, as well as reduction of interferon gamma (IFNγ) and interleukin-2 (IL-2) release. In addition, MSCs interfered with the secretory potential of leukemia-associated WT1- and ROR1-targeting CTL clones, inhibiting the release of IFNγ, tumor necrosis factor alpha, and IL-2. Abrogated T cells were shown to retain their cytolytic activity. Moreover, we demonstrate induction of a CD28loCD27loCD57+KLRG1+ senescent T-cell phenotype by MSCs. In summary, we show that MSCs are potent modulators of anti-leukemic T cells, and targeting their modes of action would likely be beneficial in a combinatorial approach with AML-directed immunotherapy.


Subject(s)
Leukemia, Myeloid, Acute , Mesenchymal Stem Cells , Humans , Bone Marrow , Interleukin-2 , CD28 Antigens , Leukocytes, Mononuclear , Leukemia, Myeloid, Acute/therapy , T-Lymphocytes, Cytotoxic , Clone Cells
3.
Int J Cancer ; 154(6): 1057-1072, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38078628

ABSTRACT

About 25% of melanoma harbor activating NRAS mutations, which are associated with aggressive disease therefore requiring a rapid antitumor intervention. However, no efficient targeted therapy options are currently available for patients with NRAS-mutant melanoma. MEK inhibitors (MEKi) appear to display a moderate antitumor activity and also immunological effects in NRAS-mutant melanoma, providing an ideal backbone for combination treatments. In our study, the MEKi binimetinib, cobimetinib and trametinib combined with the BRAF inhibitors (BRAFi) encorafenib, vemurafenib and dabrafenib were investigated for their ability to inhibit proliferation, induce apoptosis and alter the expression of immune modulatory molecules in sensitive NRAS-mutant melanoma cells using two- and three-dimensional cell culture models as well as RNA sequencing analyses. Furthermore, NRAS-mutant melanoma cells resistant to the three BRAFi/MEKi combinations were established to characterize the mechanisms contributing to their resistance. All BRAFi induced a stress response in the sensitive NRAS-mutant melanoma cells thereby significantly enhancing the antiproliferative and proapoptotic activity of the MEKi analyzed. Furthermore, BRAFi/MEKi combinations upregulated immune relevant molecules, such as ICOS-L, components of antigen-presenting machinery and the "don't eat me signal" molecule CD47 in the melanoma cells. The BRAFi/MEKi-resistant, NRAS-mutant melanoma cells counteracted the molecular and immunological effects of BRAFi/MEKi by upregulating downstream mitogen-activated protein kinase pathway molecules, inhibiting apoptosis and promoting immune escape mechanisms. Together, our study reveals potent molecular and immunological effects of BRAFi/MEKi in sensitive NRAS-mutant melanoma cells that may be exploited in new combinational treatment strategies for patients with NRAS-mutant melanoma.


Subject(s)
Melanoma , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Proto-Oncogene Proteins B-raf , Vemurafenib , Protein Kinase Inhibitors/adverse effects , Mitogen-Activated Protein Kinase Kinases , Mutation , Drug Resistance, Neoplasm/genetics , Membrane Proteins/genetics , GTP Phosphohydrolases/genetics
4.
Front Pharmacol ; 14: 970457, 2023.
Article in English | MEDLINE | ID: mdl-36817127

ABSTRACT

The cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor palbociclib is an emerging cancer therapeutic that just recently gained Food and Drug Administration approval for treatment of estrogen receptor (ER)-positive, human epidermal growth factor receptor (Her)2-negative breast cancer in combination with the ER degrader fulvestrant. However, CDK4/6 inhibitors are not cancer-specific and may affect also other proliferating cells. Given the importance of T cells in antitumor defense, we studied the influence of palbociclib/fulvestrant on human CD3+ T cells and novel emerging T cell-based cancer immunotherapies. Palbociclib considerably inhibited the proliferation of activated T cells by mediating G0/G1 cell cycle arrest. However, after stopping the drug supply this suppression was fully reversible. In light of combination approaches, we further investigated the effect of palbociclib/fulvestrant on T cell-based immunotherapies by using a CD3-PSCA bispecific antibody or universal chimeric antigen receptor (UniCAR) T cells. Thereby, we observed that palbociclib clearly impaired T cell expansion. This effect resulted in a lower total concentration of interferon-γ and tumor necrosis factor, while palbociclib did not inhibit the average cytokine release per cell. In addition, the cytotoxic potential of the redirected T cells was unaffected by palbociclib and fulvestrant. Overall, these novel findings may have implications for the design of treatment modalities combining CDK4/6 inhibition and T cell-based cancer immunotherapeutic strategies.

5.
Ther Apher Dial ; 26 Suppl 1: 18-28, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36468334

ABSTRACT

BACKGROUND: Atherosclerosis is considered a chronic inflammation of arterial vessels with the involvement of several immune cells causing severe cardiovascular diseases. Lipoprotein apheresis (LA) improves cardiovascular conditions of patients with severely disturbed lipid metabolism. In this context, little is known about the impact of LA on various immune cell populations, especially over time. METHODS: Immune cells of 18 LA-naïve patients starting weekly LA treatment were analyzed before and after four apheresis cycles over the course of 24 weeks by flow cytometry. RESULTS AND CONCLUSIONS: An acute lowering effect of LA on T cell and natural killer (NK) cell subpopulations expressing CD69 was observed. The non-classical and intermediate monocyte subsets as well as HLA-DR+ 6-sulfo LacNAc+ monocytes were significantly reduced during the apheresis procedure. We conclude that LA has the capacity to alter various immune cell subsets. However, LA has mainly short-term effects than long-term consequences on proportions of immune cells.


Subject(s)
Blood Component Removal , Cardiovascular Diseases , Humans , Biomarkers , Lipoproteins , Cardiovascular Diseases/etiology , Monocytes , Blood Component Removal/methods , Treatment Outcome
6.
Immunity ; 55(4): 701-717.e7, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35364006

ABSTRACT

Bacterial sensing by intestinal tumor cells contributes to tumor growth through cell-intrinsic activation of the calcineurin-NFAT axis, but the role of this pathway in other intestinal cells remains unclear. Here, we found that myeloid-specific deletion of calcineurin in mice activated protective CD8+ T cell responses and inhibited colorectal cancer (CRC) growth. Microbial sensing by myeloid cells promoted calcineurin- and NFAT-dependent interleukin 6 (IL-6) release, expression of the co-inhibitory molecules B7H3 and B7H4 by tumor cells, and inhibition of CD8+ T cell-dependent anti-tumor immunity. Accordingly, targeting members of this pathway activated protective CD8+ T cell responses and inhibited primary and metastatic CRC growth. B7H3 and B7H4 were expressed by the majority of human primary CRCs and metastases, which was associated with low numbers of tumor-infiltrating CD8+ T cells and poor survival. Therefore, a microbiota-, calcineurin-, and B7H3/B7H4-dependent pathway controls anti-tumor immunity, revealing additional targets for immune checkpoint inhibition in microsatellite-stable CRC.


Subject(s)
Colorectal Neoplasms , Microbiota , Animals , B7 Antigens , CD8-Positive T-Lymphocytes , Calcineurin/metabolism , Colorectal Neoplasms/metabolism , Mice , NFATC Transcription Factors/metabolism , V-Set Domain-Containing T-Cell Activation Inhibitor 1
7.
Nat Commun ; 13(1): 1880, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35388002

ABSTRACT

Sensing of pathogens by pattern recognition receptors (PRR) is critical to initiate protective host defence reactions. However, activation of the immune system has to be carefully titrated to avoid tissue damage necessitating mechanisms to control and terminate PRR signalling. Dectin-1 is a PRR for fungal ß-glucans on immune cells that is rapidly internalised after ligand-binding. Here, we demonstrate that pathogen recognition by the Dectin-1a isoform results in the formation of a stable receptor fragment devoid of the ligand binding domain. This fragment persists in phagosomal membranes and contributes to signal transduction which is terminated by the intramembrane proteases Signal Peptide Peptidase-like (SPPL) 2a and 2b. Consequently, immune cells lacking SPPL2b demonstrate increased anti-fungal ROS production, killing capacity and cytokine responses. The identified mechanism allows to uncouple the PRR signalling response from delivery of the pathogen to degradative compartments and identifies intramembrane proteases as part of a regulatory circuit to control anti-fungal immune responses.


Subject(s)
Lectins, C-Type , Signal Transduction , Lectins, C-Type/metabolism , Ligands , Proteolysis , Receptors, Pattern Recognition/metabolism
8.
Blood ; 138(25): 2655-2669, 2021 12 23.
Article in English | MEDLINE | ID: mdl-34280257

ABSTRACT

Antibody-based immunotherapy is a promising strategy for targeting chemoresistant leukemic cells. However, classical antibody-based approaches are restricted to targeting lineage-specific cell surface antigens. By targeting intracellular antigens, a large number of other leukemia-associated targets would become accessible. In this study, we evaluated a novel T-cell bispecific (TCB) antibody, generated by using CrossMAb and knob-into-holes technology, containing a bivalent T-cell receptor-like binding domain that recognizes the RMFPNAPYL peptide derived from the intracellular tumor antigen Wilms tumor protein (WT1) in the context of HLA-A*02. Binding to CD3ε recruits T cells irrespective of their T-cell receptor specificity. WT1-TCB elicited antibody-mediated T-cell cytotoxicity against AML cell lines in a WT1- and HLA-restricted manner. Specific lysis of primary acute myeloid leukemia (AML) cells was mediated in ex vivo long-term cocultures by using allogeneic (mean ± standard error of the mean [SEM] specific lysis, 67 ± 6% after 13-14 days; n = 18) or autologous, patient-derived T cells (mean ± SEM specific lysis, 54 ± 12% after 11-14 days; n = 8). WT1-TCB-treated T cells exhibited higher cytotoxicity against primary AML cells than an HLA-A*02 RMF-specific T-cell clone. Combining WT1-TCB with the immunomodulatory drug lenalidomide further enhanced antibody-mediated T-cell cytotoxicity against primary AML cells (mean ± SEM specific lysis on days 3-4, 45.4 ± 9.0% vs 70.8 ± 8.3%; P = .015; n = 9-10). In vivo, WT1-TCB-treated humanized mice bearing SKM-1 tumors exhibited a significant and dose-dependent reduction in tumor growth. In summary, we show that WT1-TCB facilitates potent in vitro, ex vivo, and in vivo killing of AML cell lines and primary AML cells; these results led to the initiation of a phase 1 trial in patients with relapsed/refractory AML (#NCT04580121).


Subject(s)
Antibodies, Bispecific/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Peptides/therapeutic use , WT1 Proteins/immunology , Animals , Antibodies, Bispecific/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Cell Line, Tumor , HLA-A2 Antigen/immunology , Humans , Leukemia, Myeloid, Acute/immunology , Mice , Peptides/pharmacology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , Tumor Cells, Cultured
9.
J Immunother Cancer ; 9(3)2021 03.
Article in English | MEDLINE | ID: mdl-33762320

ABSTRACT

BACKGROUND: Plasmacytoid dendritic cells (pDCs) play a key role in the induction and maintenance of antitumor immunity. Conversely, they can act as tolerogenic DCs by inhibiting tumor-directed immune responses. Therefore, pDCs may profoundly influence tumor progression. To gain novel insights into the role of pDCs in colon cancer, we investigated the frequency and clinical relevance of pDCs in primary tumor tissues from patients with colon cancer with different clinicopathological characteristics. METHODS: Immunohistochemical stainings were performed to explore the frequency of tumor-infiltrating BDCA-2+ pDCs in patients with colon cancer. Statistical analyses were conducted to determine an association between the pDC density and clinicopathological characteristics of the patients. Furthermore, we used multiplex immunofluorescence stainings to evaluate the localization and phenotype of pDCs in stroma and tertiary lymphoid structures (TLS) of colon cancer tissues. RESULTS: An increased density of infiltrating pDCs was associated with lower Union for International Cancer Control (UICC) stages. Furthermore, a higher pDC frequency was significantly correlated with increased progression-free and overall survival of patients with colon cancer. Moreover, a lower number of coloncancer-infiltrating pDCs was significantly and independently linked to worse prognosis. In addition, we found that a proportion of pDCs shows a nuclear expression of the transcription factor interferon regulatory factor 7 (IRF7), which is characteristic for an activated phenotype. In various tumor stroma regions, IRF7+ pDCs were located in the neighborhood of granzyme B-expressing CD8+ T cells. Moreover, pDCs were identified as a novel component of the T cell zone of colon cancer-associated TLS, which are major regulators of adaptive antitumor immunity. A proportion of TLS-associated pDCs displayed a nuclear IRF7 expression and was preferentially located close to CD4+ T cells. CONCLUSIONS: These results indicate that higher densities of tumor-infiltrating pDCs are associated with prolonged survival of patients with colon cancer. Moreover, colon cancer-infiltrating pDCs may represent a novel prognostic factor. The colocalization of activated pDCs and T cells in tumor stroma and within TLS may contribute to the correlation between higher pDC densities and better prognosis. In addition, our findings may have implications for the design of novel immunotherapeutic strategies that are based on targeting colon cancer-infiltrating pDCs.


Subject(s)
Colonic Neoplasms/immunology , Dendritic Cells/immunology , Tumor Microenvironment/immunology , Biomarkers, Tumor/analysis , CD4-Positive T-Lymphocytes/immunology , Colonic Neoplasms/mortality , Colonic Neoplasms/pathology , Colonic Neoplasms/therapy , Disease Progression , Female , Fluorescent Antibody Technique , Humans , Interferon Regulatory Factor-7/analysis , Lectins, C-Type/analysis , Lymphocytes, Tumor-Infiltrating/immunology , Male , Membrane Glycoproteins/analysis , Neoplasm Staging , Phenotype , Predictive Value of Tests , Progression-Free Survival , Receptors, Immunologic/analysis , Retrospective Studies , Tertiary Lymphoid Structures/immunology
10.
Front Cell Dev Biol ; 9: 637725, 2021.
Article in English | MEDLINE | ID: mdl-33634139

ABSTRACT

Mesenchymal stromal cells (MSCs) are characterized by an extraordinary capacity to modulate the phenotype and functional properties of various immune cells that play an essential role in the pathogenesis of inflammatory disorders. Thus, MSCs efficiently impair the phagocytic and antigen-presenting capacity of monocytes/macrophages and promote the expression of immunosuppressive molecules such as interleukin (IL)-10 and programmed cell death 1 ligand 1 by these cells. They also effectively inhibit the maturation of dendritic cells and their ability to produce proinflammatory cytokines and to stimulate potent T-cell responses. Furthermore, MSCs inhibit the generation and proinflammatory properties of CD4+ T helper (Th)1 and Th17 cells, while they promote the proliferation of regulatory T cells and their inhibitory capabilities. MSCs also impair the expansion, cytokine secretion, and cytotoxic activity of proinflammatory CD8+ T cells. Moreover, MSCs inhibit the differentiation, proliferation, and antibody secretion of B cells, and foster the generation of IL-10-producing regulatory B cells. Various cell membrane-associated and soluble molecules essentially contribute to these MSC-mediated effects on important cellular components of innate and adaptive immunity. Due to their immunosuppressive properties, MSCs have emerged as promising tools for the treatment of inflammatory disorders such as acute graft-versus-host disease, graft rejection in patients undergoing organ/cell transplantation, and autoimmune diseases.

11.
Cancers (Basel) ; 12(10)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987956

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a mostly immunosuppressive microenvironment. Tumor-draining lymph nodes (TDLN) are a major site for priming of tumor-reactive T cells and also tumor metastasis. However, the phenotype and function of T cells in TDLNs from PDAC patients is unknown. In this study, lymph nodes from the pancreatic head (PH), the hepatoduodenal ligament (HDL) and the interaortocaval (IAC) region were obtained from 25 patients with adenocarcinoma of the pancreatic head. Additionally, tumors and matched blood were analyzed from 16 PDAC patients. Using multicolor flow cytometry, we performed a comprehensive analysis of T cells. CD4+ T cells were the predominant T cell subset in PDAC-draining lymph nodes. Overall, lymph node CD4+ and CD8+ T cells had a similar degree of activation, as measured by CD69, inducible T cell co-stimulator (ICOS) and CD137 (4-1BB) expression and interferon-γ (IFNγ) secretion. Expression of the inhibitory receptor programmed death 1 (PD-1) by lymph node and tumor-infiltrating regulatory T cells (Tregs) correlated with lymph node metastasis. Collectively, Treg cells and PD-1 are two relevant components of the immunosuppressive network in PDAC-draining lymph nodes and may be particularly attractive targets for combinatorial immunotherapeutic strategies in selected patients with node-positive PDAC.

12.
Clin Transl Immunology ; 9(6): e1141, 2020.
Article in English | MEDLINE | ID: mdl-32547743

ABSTRACT

OBJECTIVES: Vaccines that prime Wilms' tumor 1 (WT1)-specific CD8+ T cells are attractive cancer immunotherapies. However, immunogenicity and clinical response rates may be enhanced by delivering WT1 to CD141+ dendritic cells (DCs). The C-type lectin-like receptor CLEC9A is expressed exclusively by CD141+ DCs and regulates CD8+ T-cell responses. We developed a new vaccine comprising a human anti-CLEC9A antibody fused to WT1 and investigated its capacity to target human CD141+ DCs and activate naïve and memory WT1-specific CD8+ T cells. METHODS: WT1 was genetically fused to antibodies specific for human CLEC9A, DEC-205 or ß-galactosidase (untargeted control). Activation of WT1-specific CD8+ T-cell lines following cross-presentation by CD141+ DCs was quantified by IFNγ ELISPOT. Humanised mice reconstituted with human immune cell subsets, including a repertoire of naïve WT1-specific CD8+ T cells, were used to investigate naïve WT1-specific CD8+ T-cell priming. RESULTS: The CLEC9A-WT1 vaccine promoted cross-presentation of WT1 epitopes to CD8+ T cells and mediated priming of naïve CD8+ T cells more effectively than the DEC-205-WT1 and untargeted control-WT1 vaccines. CONCLUSIONS: Delivery of WT1 to CD141+ DCs via CLEC9A stimulates CD8+ T cells more potently than either untargeted delivery or widespread delivery to all Ag-presenting cells via DEC-205, suggesting that cross-presentation by CD141+ DCs is sufficient for effective CD8+ T-cell priming in humans. The CLEC9A-WT1 vaccine is a promising candidate immunotherapy for malignancies that express WT1.

13.
Mater Sci Eng C Mater Biol Appl ; 109: 110566, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32228987

ABSTRACT

Marine demosponges of the Verongiida order are considered a gold-mine for bioinspired materials science and marine pharmacology. The aim of this work was to simultaneously isolate selected bromotyrosines and unique chitinous structures from A. aerophoba and to propose these molecules and biomaterials for possible application as antibacterial and antitumor compounds and as ready-to-use scaffolds for cultivation of cardiomyocytes, respectively. Among the extracted bromotyrosines, the attention has been focused on aeroplysinin-1 that showed interesting unexpected growth inhibition properties for some Gram-negative clinical multi-resistant bacterial strains, such as A. baumannii and K. pneumoniae, and on aeroplysinin-1 and on isofistularin-3 for their anti-tumorigenic activity. For both compounds, the effects are cell line dependent, with significant growth inhibition activity on the neuroblastoma cell line SH-SY5Y by aeroplysinin-1 and on breast cancer cell line MCF-7 by isofistularin-3. In this study, we also compared the cultivation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) on the A. aerophoba chitinous scaffolds, in comparison to chitin structures that were pre-coated with Geltrex™, an extracellular matrix mimetic which is used to enhance iPSC-CM adhesion. The iPSC-CMs on uncoated and pure chitin structures started contracting 24 h after seeding, with comparable behaviour observed on Geltrex-coated cell culture plates, confirming the biocompatibility of the sponge biomaterial with this cell type. The advantage of A. aerophoba is that this source organism does not need to be collected in large quantities to supply the necessary amount for further pre-clinical studies before chemical synthesis of the active compounds will be available. A preliminary analysis of marine sponge bioeconomy as a perspective direction for application of biomaterials and secondary bioactive metabolites has been finally performed for the first time.


Subject(s)
Acetonitriles , Alkaloids , Aquatic Organisms/chemistry , Biomimetic Materials , Cyclohexenes , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Porifera/chemistry , Acetonitriles/chemistry , Acetonitriles/pharmacokinetics , Acetonitriles/pharmacology , Alkaloids/chemistry , Alkaloids/pharmacokinetics , Alkaloids/pharmacology , Animals , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacokinetics , Biomimetic Materials/pharmacology , Cell Line, Tumor , Cyclohexenes/chemistry , Cyclohexenes/pharmacokinetics , Cyclohexenes/pharmacology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Humans , Induced Pluripotent Stem Cells/cytology , MCF-7 Cells , Myocytes, Cardiac/cytology
14.
Front Immunol ; 11: 140, 2020.
Article in English | MEDLINE | ID: mdl-32117287

ABSTRACT

Cancer stem cells (CSCs), also known as tumor-initiating cells, are characterized by an increased capacity for self-renewal, multipotency, and tumor initiation. While CSCs represent only a small proportion of the tumor mass, they significantly account for metastatic dissemination and tumor recurrence, thus making them attractive targets for therapy. Due to their ability to sustain in dormancy, chemo- and radiotherapy often fail to eliminate cancer cells with stemness properties. Recent advances in the understanding of the tumor microenvironment (TME) illustrated the importance of the immune contexture, determining the response to therapy and clinical outcome of patients. In this context, CSCs exhibit special properties to escape the recognition by innate and adaptive immunity and shape the TME into an immunosuppressive, pro-tumorigenic landscape. As CSCs sculpt the immune contexture, the phenotype and functional properties of the tumor-infiltrating immune cells in turn influence the differentiation and phenotype of tumor cells. In this review, we summarize recent studies investigating main immunomodulatory properties of CSCs and their underlying molecular mechanisms as well as the impact of immune cells on cancer cells with stemness properties. A deeper understanding of this bidirectional crosstalk shaping the immunological landscape and determining therapeutic responses will facilitate the improvement of current treatment modalities and the design of innovative strategies to precisely target CSCs.


Subject(s)
Cell Communication/immunology , Macrophages/immunology , Myeloid-Derived Suppressor Cells/immunology , Neoplastic Stem Cells/immunology , T-Lymphocytes/immunology , Tumor Microenvironment/immunology , Cell Dedifferentiation/immunology , Humans , Immunomodulation , Immunotherapy/methods , Phenotype , Tumor Escape
15.
Front Immunol ; 11: 364, 2020.
Article in English | MEDLINE | ID: mdl-32194568

ABSTRACT

The tumor immune contexture plays a major role for the clinical outcome of patients. High densities of CD45RO+ T helper 1 cells and CD8+ T cells are associated with improved survival of patients with various cancer entities. In contrast, a higher frequency of tumor-infiltrating M2 macrophages is correlated with poor prognosis. Recent studies provide evidence that the tumor immune architecture also essentially contributes to the clinical efficacy of immune checkpoint inhibitor (CPI) therapy in patients. Pretreatment melanoma samples from patients who experienced a clinical response to anti-programmed cell death protein 1 (PD-1) treatment show higher densities of infiltrating CD8+ T cells compared to samples from patients that progressed during therapy. Anti-PD-1 therapy results in an increased density of tumor-infiltrating T lymphocytes in treatment responders. In addition, elevated frequencies of melanoma-infiltrating TCF7+CD8+ T cells are correlated with beneficial clinical outcome of anti-PD-1-treated patients. In contrast, a high density of tumor-infiltrating, dysfunctional PD-1+CD38hi CD8+ cells in melanoma patients is associated with anti-PD-1 resistance. Such findings indicate that comprehensive tumor immune contexture profiling prior to and during CPI therapy may lead to the identification of underlying mechanisms for treatment response or resistance, and the design of improved immunotherapeutic strategies. Here, we focus on studies exploring the impact of intratumoral T and B cells at baseline on the clinical outcome of CPI-treated cancer patients. In addition, recent findings demonstrating the influence of CPIs on tumor-infiltrating lymphocytes are summarized.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/drug therapy , B-Lymphocytes/immunology , Humans , Melanoma/drug therapy , Melanoma/immunology , Neoplasms/immunology , T-Lymphocytes/immunology
16.
J Immunother Cancer ; 7(1): 307, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31730025

ABSTRACT

BACKGROUND: We previously showed that the bacterial lipopeptide Pam3Cys-Ser-Ser, meanwhile established as a toll-like receptor (TLR) 1/2 ligand, acts as a strong adjuvant for the induction of virus specific CD8+ T cells in mice, when covalently coupled to a synthetic peptide. CASE PRESENTATION: We now designed a new water-soluble synthetic Pam3Cys-derivative, named XS15 and characterized it in vitro by a TLR2 NF-κB luciferase reporter assay. Further, the capacity of XS15 to activate immune cells and stimulate peptide-specific CD8+ T and NK cells by 6-sulfo LacNAc+ monocytes was assessed by flow cytometry as well as cytokine induction using immunoassays. The induction of a functional immune response after vaccination of a volunteer with viral peptides was assessed by ELISpot assay and flow cytometry in peripheral blood cells and infiltrating cells at the vaccination site, as well as by immunohistochemistry and imaging. XS15 induced strong ex vivo CD8+ and TH1 CD4+ responses in a human volunteer upon a single injection of XS15 mixed to uncoupled peptides in a water-in-oil emulsion (Montanide™ ISA51 VG). A granuloma formed locally at the injection site containing highly activated functional CD4+ and CD8+ effector memory T cells. The total number of vaccine peptide-specific functional T cells was experimentally assessed and estimated to be 3.0 × 105 in the granuloma and 20.5 × 106 in peripheral blood. CONCLUSION: Thus, in one volunteer we show a granuloma forming by peptides combined with an efficient adjuvant in a water-in-oil-emulsion, inducing antigen specific T cells detectable in circulation and at the vaccination site, after one single vaccination only. The ex vivo T cell responses in peripheral blood were detectable for more than one year and could be strongly boosted by a second vaccination. Hence, XS15 is a promising adjuvant candidate for peptide vaccination, in particular for tumor peptide vaccines in a personalized setting.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Peptides/therapeutic use , Toll-Like Receptor 1/immunology , Toll-Like Receptor 2/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Granuloma/immunology , HEK293 Cells , Healthy Volunteers , Humans , Killer Cells, Natural/immunology , Ligands , Male , Middle Aged , Vaccination
17.
J Clin Med ; 8(10)2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31557787

ABSTRACT

The administration of antibodies blocking the immune checkpoint molecules programmed cell death protein 1 (PD-1) or programmed cell death 1 ligand 1 (PD-L1) has evolved as a very promising treatment option for cancer patients. PD-1/PD-L1 inhibition has significantly enhanced expansion, cytokine secretion, and cytotoxic activity of CD4+ and CD8+ T lymphocytes, resulting in enhanced antitumor responses. Anti-PD-1 or anti-PD-L1 therapy has induced tumor regression and improved clinical outcome in patients with different tumor entities, including melanoma, non-small-cell lung cancer, and renal cell carcinoma. These findings led to the approval of various anti-PD-1 or anti-PD-L1 antibodies for the treatment of tumor patients. However, the majority of patients have failed to respond to this treatment modality. Comprehensive immune monitoring of clinical trials led to the identification of potential biomarkers distinguishing between responders and non-responders, the discovery of modes of treatment resistance, and the design of improved immunotherapeutic strategies. In this review article, we summarize the evolving landscape of biomarkers for anti-PD-1 or anti-PD-L1 therapy.

18.
Front Immunol ; 10: 602, 2019.
Article in English | MEDLINE | ID: mdl-30984181

ABSTRACT

Neoadjuvant radiochemotherapy (nRCT) can significantly influence the tumor immune architecture that plays a pivotal role in regulating tumor growth. Whereas, various studies have investigated the effect of nRCT on tumor-infiltrating T cells, little is known about its impact on the frequency and activation status of human dendritic cells (DCs). Plasmacytoid DCs (pDCs) essentially contribute to the regulation of innate and adaptive immunity and may profoundly influence tumor progression. Recent studies have revealed that higher pDC numbers are associated with poor prognosis in cancer patients. 6-sulfo LacNAc-expressing monocytes (slanMo) represent a particular proinflammatory subset of human non-classical blood monocytes that can differentiate into DCs. Recently, we have reported that activated slanMo produce various proinflammatory cytokines and efficiently stimulate natural killer cells and T lymphocytes. slanMo were also shown to accumulate in clear cell renal cell carcinoma (ccRCC) and in metastatic lymph nodes from cancer patients. Here, we investigated the influence of nRCT on the frequency of rectal cancer-infiltrating pDCs and slanMo. When evaluating rectal cancer tissues obtained from patients after nRCT, a significantly higher density of pDCs in comparison to pre-nRCT tissue samples was found. In contrast, the density of slanMo was not significantly altered by nRCT. Further studies revealed that nRCT significantly enhances the proportion of rectal cancer-infiltrating CD8+ T cells expressing the cytotoxic effector molecule granzyme B. When exploring the impact of nRCT on the phenotype of rectal cancer-infiltrating pDCs and slanMo, we observed that nRCT markedly enhances the percentage of inducible nitric oxide synthase (iNOS)- or tumor necrosis factor (TNF) alpha-producing slanMo. Furthermore, nRCT significantly increased the percentage of mature CD83+ pDCs in rectal cancer tissues. Moreover, the proportion of pDCs locally expressing interferon-alpha, which plays a major role in antitumor immunity, was significantly higher in post-nRCT tissues compared to pre-nRCT tumor specimens. These novel findings indicate that nRCT significantly influences the frequency and/or phenotype of pDCs, slanMo, and CD8+ T cells, which may influence the clinical response of rectal cancer patients to nRCT.


Subject(s)
Chemoradiotherapy , Dendritic Cells/immunology , Monocytes/immunology , Neoadjuvant Therapy , Rectal Neoplasms , Adult , Aged , Amino Sugars/immunology , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/therapy , Dendritic Cells/pathology , Female , Humans , Kidney Neoplasms/immunology , Kidney Neoplasms/pathology , Kidney Neoplasms/therapy , Male , Middle Aged , Monocytes/pathology , Neoplasm Metastasis , Rectal Neoplasms/immunology , Rectal Neoplasms/pathology , Rectal Neoplasms/therapy , Retrospective Studies
20.
Biomedicines ; 6(1)2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29494517

ABSTRACT

Targeting the immune checkpoint receptors cytotoxic T lymphocyte antigen 4 (CTLA-4), programmed cell death protein 1 (PD-1), or programmed cell death 1 ligand 1 (PD-L1) represents a very attractive treatment modality for tumor patients. The administration of antibodies against these receptors can promote efficient antitumor effects and can induce objective clinical responses in about 20-40% patients with various tumor types, accompanied by improved survival. Based on their therapeutic efficiency, several antibodies have been approved for the treatment of tumor patients. However, many patients do not respond to checkpoint inhibitor therapy. Therefore, the identification of biomarkers is required to guide patient selection for this treatment modality. Here, we summarize recent studies investigating the PD-L1 expression or mutational load of tumor tissues as well as the frequency and phenotype of immune cells in tumor patients prior to and during CTLA-4 or PD-1/PD-L1 inhibitor treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...