Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Environ Contam Toxicol ; 71(4): 572-588, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27757496

ABSTRACT

Recovery after exposure to herbicides-atrazine, isoproturon, and trifluralin-their binary and ternary mixtures, was studied under laboratory conditions using a slightly adapted standard protocol for Lemna minor. The objectives of the present study were (1) to compare empirical to predicted toxicity of selected herbicide mixtures; (2) to assess L. minor recovery potential after exposure to selected individual herbicides and their mixtures; and (3) to suggest an appropriate recovery potential assessment approach and endpoint in a modified laboratory growth inhibition test. The deviation of empirical from predicted toxicity was highest in binary mixtures of dissimilarly acting herbicides. The concentration addition model slightly underestimated mixture effects, indicating potential synergistic interactions between photosynthetic inhibitors (atrazine and isoproturon) and a cell mitosis inhibitor (trifluralin). Recovery after exposure to the binary mixture of atrazine and isoproturon was fast and concentration-independent: no significant differences between relative growth rates (RGRs) in any of the mixtures (IC10Mix, 25Mix, and 50Mix) versus control level were recorded in the last interval of the recovery phase. The recovery of the plants exposed to binary and ternary mixtures of dissimilarly acting herbicides was strictly concentration-dependent. Only plants exposed to IC10Mix, regardless of the herbicides, recovered RGRs close to control level in the last interval of the recovery phase. The inhibition of the RGRs in the last interval of the recovery phase compared with the control level is a proposed endpoint that could inform on reversibility of the effects and indicate possible mixture effects on plant population recovery potential.


Subject(s)
Alismatales/drug effects , Herbicides/toxicity , Toxicity Tests/methods , Water Pollutants, Chemical/toxicity , Laboratories
2.
Environ Toxicol Chem ; 34(9): 2104-15, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25943248

ABSTRACT

The present study compares the practicability, reproducibility, power, and sensitivity of a Myriophyllum aquaticum growth inhibition test in a water-sediment system with the recently accepted Myriophyllum spicatum test in an equivalent testing system and the standard Lemna sp. test. Special consideration was given to endpoints based on M. aquaticum control plant growth and variability of relative growth rate and yield: shoot length, fresh weight, dry weight, and root weight. Sensitivity analysis was based on tests performed with 3,5-dichlorophenol, atrazine, isoproturon, trifluralin, 2,4-dichlorophenoloxyacetic acid, and dicamba. Growth rates for average M. aquaticum control plants were 0.119 d(-1) and 0.112 d(-1), with average estimated doubling time 6.33 d and 6.74 d for relative growth rate fresh weight and shoot length, respectively. Intrinsic variability of M. aquaticum endpoints was low: 12.9%, 12.5%, and 17.8% for relative growth rate shoot length, relative growth rate fresh weight and yield fresh weight, respectively. The power of the test was fairly high. When the most sensitive endpoints were used for comparison, the 2 Myriophyllum species were similarly sensitive, more sensitive (in the case of auxin simulators), or at least equally sensitive as Lemna minor to other tested herbicides. The M. aquaticum 10-d test with a 7-d exposure period in a water-sediment system has acceptable sensitivity and can provide repeatable, reliable, and reproducible results; therefore, it should not be disregarded as a good and representative additional test in environmental risk assessment.


Subject(s)
Geologic Sediments/chemistry , Herbicides/toxicity , Magnoliopsida/drug effects , Water Pollutants, Chemical/toxicity , Water/chemistry , Araceae/drug effects , Araceae/growth & development , Herbicides/chemistry , Magnoliopsida/growth & development , Plant Roots/drug effects , Plant Roots/growth & development , Plant Stems/drug effects , Plant Stems/growth & development , Risk Assessment , Water Pollutants, Chemical/chemistry
3.
Environ Toxicol Chem ; 31(2): 417-26, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22095561

ABSTRACT

The relative sensitivity and recovery potential of two aquatic macrophyte species, Lemna minor and Myriophyllum aquaticum, exposed to atrazine (concentration ranges 80-1,280 µg/L and 40-640 µg/L, respectively) were evaluated using slightly adapted standard protocol for Lemna spp.: relative growth rates (RGR) and yield of both plants were measured in 3-d-long intervals during the exposure and recovery phase. Myriophyllum aquaticum was also exposed to atrazine-spiked sediment (0.1-3.7 µg/g) in a water-free system. The results of M. aquaticum sediment contact tests showed that root- and shoot-based growth parameters are equally sensitive endpoints. In the water (sediment-free) test system, L. minor recovered after short (3 d) and longer exposure (7 d) to all atrazine concentrations after only a 5- to 6-d-long recovery phase. The recovery of M. aquaticum after short exposure was slower and less efficient: after 12 d of recovery phase the final biomass of plants exposed to 380 and 640 µg/L was below the initial values. The last interval RGR provides a good indication of plant recovery potential regardless of species growth strategy. If compared to L. minor, the difference in growth rate, sensitivity, lag phase, recovery potential from water-column substances, and also suitability for studies investigating the effect of sediment-bound pollutants advocates the use of M. aquaticum as an additional macrophyte species in risk assessment.


Subject(s)
Araceae/drug effects , Atrazine/toxicity , Herbicides/toxicity , Magnoliopsida/drug effects , Water Pollutants, Chemical/toxicity , Araceae/growth & development , Biomass , Magnoliopsida/growth & development , Plant Roots/drug effects , Plant Roots/growth & development , Risk Assessment , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...